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1Abstract—In this work, an evolvable hardware technique
has been applied to a real control environment composed by a
damped pendulum. A combinatorial 4 bit circuit input/output
driver design by genetic algorithms will be implemented in an
Altera Cyclone II FPGA, aiming to prove the efficiency of the
evolvable design. A proportional driver tuned by a genetic
algorithm (Kp-AG) was also implemented and subjected to the
same tests to compare their performance against the Evolvable
Hardware design. Experiments use a square reference signal to
force overshoot errors, and, a sinusoidal signal to sample the
response for both drivers. The results obtained by the
experiments show that the evolutionary approach to design
drivers can be competitive and improve considerably the
control in this particular case of nonlinear control using low
resolution feedback information.

Index Terms—FPGA, evolvable hardware, genetic
algorithm, nonlinear pendulum.

I. INTRODUCTION

The use of evolutionary techniques for control systems
purposes used to be restricted on parametric optimization,
such as the use of genetic algorithms to adjust the
parameters of PID controllers [1]. Afterwards, the use of an
Evolvable Hardware (EHW) technique for building a
damped pendulum digital driver was proposed in [2], in
which the information to design the driver is only the
feedback of their behaviour through testing. This technique
got beyond parametric optimization, using heuristics for
designing a logic circuit dedicated to control.

EHW consists in integration of evolutionary computation
and programmable hardware devices [3]. This is an active
research area whose the first researches started in the
beginning of the 1990’s [4]–[7], starting to deal with
problems involving combinational logic circuits design.
Usually evolvable techniques require parallel programming
and are suitable for Field Programmable Gate Arrays
(FPGA) design [8], [9], being the main objective is to
provide an autonomous hardware design with minimal or no
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human intervention.
In this context the design of electronic circuits often

require the ability to develop circuits of increasing
complexity, which requires novel techniques to solve
effectively and time and combinatorial complexity
problems. Intelligent techniques like simulated annealing
[10] and artificial neural networks [11] are frequently used
to search for alternative solutions to classic engineering
methods for optimization electronics systems.

This paper proposes a hardware implementation of a
4 bits digital control circuit for a real nonlinear damped
pendulum, based on the simulation work produced in [12],
extending that proposal to a real world application using
Field Programmable Gate Arrays (FPGAs), and collecting
significant data for the validation of the technique. The
generation of prototype tests based on such technology aims
to propose an alternative solution to the problem of
controlling nonlinear systems, such as control of robot
manipulators [13], which motivates a new application of
EHW in the control area that is not commonly used.

This work consists in integrating mechanical and
electrical parts and designing the digital systems to program
the FPGA. The FPGA contains a pendulum driver and other
necessary functions, such a state machine and a PWM
generator. The driver basically works controlling the energy
flux to a DC motor that moves the gearbox attached to the
pendulum, switching between higher and lower energy
levels and changing the motor polarity. The feedback is
performed by an incremental encoder coupled with the axis
of the pendulum and inserted into the digital driver as a
closed-loop control. The use of FPGAs in EHW projects is
appropriate because such devices allow rapid prototyping
and reconfiguration.

This work is organized as follows. In Section II we
introduce the preliminary concepts and the general proposal
of the EWH technique. Section III refers to the preliminary
work, the fundamentals and the characteristics of the
problem, and also the circuit representation using GA
chromosomes. The general scheme of the work, including
the used hardware, graphics and tables is described in
Section IV, followed by the conclusions in Section V.
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II. THE EVOLVABLE HARDWARE TECHNIQUE

Since the last decade, many researches have been applied
to study of the design of electronic circuits, using principles
based on the neo-Darwinian theory: this process establishes
the survival of the most adapted species in a changing
environment. EHW proposes an automatic design of
electronic devices based on a behavioural description of the
system, searching for more general solutions. The process
underlying the evolution can be called EHW engine, which
generates the evolution steps necessary for the automated
design of the circuit (Fig. 1). The EHW engine can be
provided by algorithms inspired by biological evolution,
characterized by the research line called Evolutionary
Computing. EHW can find new design methodologies that
may result in circuits and architectures with different
behaviours due to the exploitation of the search regions
often ignored by traditional methods [14].

Fig. 1. EHW process.

Evolutionary Algorithms are typically applied to solve
search problems in the form of :f S   , where S is the
search space which consists of all possible solutions for a
particular problem [14]. Depending on the particularities of
the problem, the solutions can be represented by n-
dimensional vectors composed by binary, integer or real
numbers. A real number, called Fitness Value, is associated
to all existing solutions. This number measures the quality
of a particular individual to solve that specified problem.
The process that scores the individuals is called Fitness
Function. Basically, the task of an evolutionary algorithm is
sampling the search space S to finding the best solutions in
accordance with the problem, using the Fitness Value as a
guide.

In this case, the EHW engine uses a collective learning
process on a limited population of individuals (circuits),
which implies in a parallelism in the search for solutions.
Usually each individual represents (or encodes) a point in
the search space of potential solutions to the problem under
study. An evolutionary process is applied to the population,
allowing after several generations the emergence of better
individuals than its predecessors.

Inside the EHW engine, an evolutionary algorithm works
in a loop until a limited number of generations is reached or
a satisfactory circuit is found, as observed in Fig. 2. There
are basically 4 cyclic steps: selection, crossover, mutation
and evaluation. First, a random circuit population is created.
After that, the population need to be evaluated; in the
evaluation step, every individual (circuit) receives a Fitness
Number that corresponds to their adaptability (how well it
does the job). Using the fitness value, the selection chooses
individuals to be part of the reproduction process by
crossover. The crossover step mixes the chromosome

genetic material of the parents chosen by selection,
generating a new population. In the mutation step some
circuits’ parts are changed to produce more diversity and
insert new individual characteristics. There are no
guarantees of finding the optimal circuit solution, because of
the size and complexity of the search space, but it is possible
to find very good and satisfactory circuits for some
applications.

This heuristic technique works exploring the search space
where we can also find circuits obtained through classical
design techniques (Karnaugh Map [15], Quine-McCluskey
Algorithm and Boolean algebra), but also explore regions of
space where there are unconventional circuits, which may be
more suitable for some cases. This is the main EHW
advantage in addition to design automation. The way that
the Evolutionary Algorithm (EA) explores the search space
depends on the circuit encoding and others parameters like
crossover probability and mutation rate. According to [14],
it can be summarized that the most notable features of
circuits observed in both, intrinsic and extrinsic evolution:
 Potential to find novel circuits;
 The possibility to find new design rules from the novel
circuits obtained;
 Evolutionary methods can manage a larger set of design
specifications compared to human design techniques;
 Evolutionary systems have been able to achieve
competitive circuits when compared with the state of the
art in electronics;
 Evolutionary tools are more appropriate to analog
design, this fact could produce a new trend in the research
on analog circuits.

Fig. 2. EHW steps diagram.

EHW was first proposed in the early 90s for hardware
design. It falls into two categories: original design and
adaptive systems. Original design uses EA to get a system
that meets a predefined specification. Adaptive systems
reconfigure an existing design to fault tolerance or to adapt
it to a changing operational environment. EHW can be used
as an alternative to conventional hardware design
methodology [16].

The digital bottom-up circuit design that uses heuristics
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like evolutionary algorithms have a problem of scalability,
currently limited to 16 input bits [12]. This limit is due to
the fact that the search space increases considerably when
adding new input bits in the evolving circuits, increasing
chromosomes sizes that representing them. Many minutes,
hours or even days of computational execution are often
spent on a EHW process, depending on the approach used
and the target circuit complexity.

EHW has three evolution methods. The first one is the
extrinsic evolution where the system is entirely simulated
and the circuit is tested inside the simulation environment.
The second one is in the intrinsic evolution that evolves the
circuits in software environment and tests it in a hardware
environment, and finally, the mixtrinsic evolution which
mixes intrinsic and extrinsic changes in order to achieve
greater circuit portability [14]. The most popular devices
used to evolve digital hardware (intrinsic/mixtrinsic) are the
FPGAs due to their characteristics of reconfiguration
capability, design flexibility and very high logic capacity.
The class of evolutionary algorithm used in this case is the
Genetic Algorithm, chromosomes can be implemented as
circuits, and it is possible to do a parallelized search to find
the best design.

III. THE CASE STUDY DESCRIPTION

The study realized in [2], [12] proposes the automatic
design of a digital controller with nonlinear response
characteristics applied to the pendulum control using a
genetic algorithm (GA) [17] as the EHW engine. For
comparison purposes, the evolution (also by GA) of the
classic Proportional Derivative controller (PD) was done.
Thus, the results obtained for both classes of controllers:
classic PD, which was tuned by GA, and the EHW driver.

A. Nonlinear Pendulum Characteristics
The control target is the damped nonlinear pendulum. The

equation that governs the pendulum movement is:

2 2 sin ,ml kl mg      (1)

where m = 0.210 kg is the pendulum rod mass, g = 9.82 m/s2

is the gravity acceleration, k = 0.3 Nms/rad is the viscosity
of the environment, l = 0.285 m the rod size and  the rod
angle. These parameters were obtained based on the
physical model of the pendulum used in laboratory tests.
The choice of the PD controller over the PID was made
because the first one has scalability acceptable to the
designing technique applied in the EHW controller. The
pendulum model was simulated to evaluate the control
system performance [2], [12]; this model is illustrated in
Fig. 3.

Fig. 3. Simulink pendulum model. The gains were adjusted based on the
physical pendulum structure.

B. PID Controller tuned by GA
One of the main points in the evolutionary process of a

genetic Proportional Integrative Derivative Controller (PID)
is the definition of a chromosomal representation,
containing the gains like genetic information. The
chromosome is a binary string divided in three parts to
represent the three gains: proportional, derivative and
integrative (2)

( , , ) 010 ... 00 101... 01111...10.
KP KD KI

KP KD KI    (2)

In this chromosome, each gain is represented by a digital
number coded with floating point or integer representation.
Basically, the GA changes the bits by crossover and
mutation exploring the search space to find the best gains to
the controller. Each chromosome is tested and evaluated. In
the selection process, the set of parameters that represents
the better control performance will have more probability to
be chosen to participate in the reproduction process [12].

C. Driver Evolution
For the electronic circuit design, the problem domain is

the derivation or the circuit construction and the solution
obtained from this process, which behaves according to the
given specifications. The first step after obtaining the
behavioural specifications is to define the individual
representation (the circuit representation) and a function that
calculates their “skills” in solving the problem. After that, it
is necessary to consider how the evolutionary operators,
such as crossover and mutation, are applied to the
representations to provide increased individuals adaptability
through the generations.

In the GA utilization the circuits are represented by
chromosomes. One example is the codification presented by
[14] where the combinational logic circuits can be
represented by a sum of products of the system logic
variables (Fig. 4).

Fig. 4. Sum of products chromosome representation.

The resulting chromosome is a ternary string. Each
position in the chromosome can assume the values “0” for
the complemented variable, “1” for non-complemented
variable and “x” to the absence of variable. That is a simple
codification but suitable to be used in circuits containing
only one output.

The codification used to evolve the driver is a gate based
codification that represents the circuits by netlists (Fig. 5).
In the chromosome shown in that figure, N1 represents the
first input connection of a logic gate, N2 is the second input
connection of the same gate, “-” indicates that there is no
third input connection in this case and, at last, the AND2
represents the type of the logic gate and the number of
inputs. These types are predefined in a list of gates allowed
to the circuit. The notation is repeated along the other parts
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of the chromosome. This representation allows 1n  where
n represents the circuit outputs, and also allows a variable
size circuit representation and manipulation by simple
genetic operators.

Fig. 5. Netlist chromosome representation.

The driver chromosome was defined as a binary string
using 6 bits to each gate input connection N and 3 bits to the
gates function (BUF, INV, AND, NAND, OR, NOR, XOR,
XNOR).

As seen in Fig. 2, the first step to evolve the driver is the
creation of a random initial population of chromosomes.
Using extrinsic evolution, the PSPICE simulator is called by
Simulink to decode the chromosomes and generate the
respective logic circuit (a bitstream becomes a circuit to
simulation testing). In this process, the circuit is evaluated
using the Simulink pendulum model applying a square
function described by (3) as the reference signal
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The preparation of a new iteration involves the generation
of a new population of individuals based on selected
individuals for prior population. The process of selection
(through the technique of roulette elitist runs) ensures
keeping the best individual of previous generation into the
current one. Then the population undergoes crossover and
mutation with rates of 90 % and 5 % respectively [12]. The
mutation uses a high value due to the large search space of
the problem. Both parameter values seek diversity in the
solutions obtained through the evolutionary process. The
single-point crossover recombines the chromosomes from a
randomly chosen position, called the cut-off point. This
operation performs the exchange of bits of two strings
(chromosomes) generating a new chromosome with paternal
inheritance. In the mutation operation a number of points are
also chosen randomly according to the predefined mutation
rate and these points are then reversed. Finally a new
generation was produced and should be evaluated by the
Fitness Function, before starting a new iteration of the
algorithm. The process will be repeated until a reading a
predetermined number of generations, usually a few
thousand.

D. Fitness Function
In an evolutionary algorithm, during the selection process,

all generated solutions are evaluated by a Fitness Function
which reflects the adaptability level of an individual. The
function chosen to evaluate the EHW driver and the Kp-AG
driver is based on minimizing the index value error Integral
of the Square Error (ISE) [12]. The Fitness equation (4)
describes the Fitness has an error minimization guide to the

GA, where Jise is the Integral of the Square Error value.

1( ) ,
1

Fitness f Jise
Jise

 


(4)

If the Jise = 0 (no errors) the Fitness will be 100 % to the
circuit analysed, that indicates an optimal driver circuit to
the problem in this particular case.

IV. APPLICATION

The implementation objective in building a real model
based on a theoretical/simulated system is to demonstrate
experimentally the behaviour and functionality of this
design approach in real environments. This system was
implemented in an Altera FPGA EP2C20F484C7N Cyclone
II using schematic and VHDL programing. All the necessary
circuitry: the EHW and Proportional drivers, state machines,
PWM generators, was implemented in this single chip. The
driver’s input (EHW and Kp-AG) is a 4 bit error signal
generated by comparison between the references values and
the pendulum real position, using the 2’s complement code.
Equation (5) corresponds to the error used as the feedback,
where e(t) is the error signal, r(t) the reference signal and
the y(t) is the pendulum position

( ) ( ) ( ).e t r t y t  (5)

The output is a 4 bit word which corresponds to the PWM
control levels, like shown in Fig. 6.

Fig. 6. Diagram of the driver (EHW and Kp-AG).

Figure 7 shows both drivers behavioural. We can observe
the EHW driver (green line) has a nonlinear characteristic
due to the approaching based on experience, opposing the
Kp-AG method (red line) based on parameter tuning of a
linear driver.

Fig. 7. Kp and EHW behavioural.

A. The control system implementation
The plant used in the benchmark experiments was an
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electromechanical pendulum [18]. The system has the same
behaviour that the simulation model that was used in the
evolvable process. An Electro-Craft E-530 CC motor (24
Vcc/24 W) is coupled to a reduction gearbox system on the
stem of the pendulum. An incremental optical encoder that
allows 4000 different position points provides the pendulum
position feedback.

The reference signal was generated by a computer
commanding the pendulum to a specific position. Also, it
was used a computer running the MATLAB XPC Target
system with a digital acquisition board (NI PCI-6503, 1 kHz
Sampling) to acquire the encoder signals. Figure 8 shows a
system diagram whose components were physically
assembled. Figure 9 shows the pendulum and FPGA board
image.

The FPGA works at 50 MHz (maximal frequency) and
the Quartus II version 8.1 was used to program the FPGA.
Inside the chip there are blocks witch compose the digital
modules (Fig. 10). The first block (ADD) calculates the
error and generates a saturated 4 bit error signal (5) to be
sent to the next block (EHW/Kp(AG) controller) which
responds sending a 4 bit control word to the PWM
generator. This generator will convert the control word into
a PWM level, which is forwarded from the FPGA to the
power module responsible to control the pendulum energy
through a voltage level converter (buffers interface). The
position signal is produced by the incremental encoder and
sent back to the FPGA feedback (after a voltage conversion)
to be decoded generating a 12 bit position value. The whole
system consumes less than 5 % of the total logic elements
available in the FPGA chip.

Fig. 8. Benchmark diagram.

Fig. 9. The pendulum system.

Fig. 10. Simplified FPGA content diagram.

B. Results
Figure 11 shows the square reference signal to set the

pendulum rod to move 90 degrees clockwise, go back to the
origin (perpendicular to the gound), move 90 degrees
anticlockwise, go back to the origin where the test stops. In
both cases the driver goal is to approximate the second-order
system to a first-order system behaviour using only the 4 bit
feedback information available.

Analysing both Fig. 11 and Fig. 12, it is possible to see
that the EHW driver non-linear approach, in general,
reduces the overshoot and approximate the response to the
reference better than the Kp-GA controller. This happens
because the EHW driver explores control solutions beyond
the limitation of the GA parametric optimization of the
proportional driver.

The drivers EHW and Kp(AG) were tested separately at a
time. Two different reference signals were used in the
benchmark test (3). The first one, the square reference, was
the signal used to compose the fitness function (Fig. 12).
The second signal was a Sin function not used previously in
the evolution process, totally unknown to the driver before
the benchmark test (Fig. 13 and 14).

The Root Mean Square (RMS) error was used to provide
a comparison between EHW and the Kp(AG) driver (6),

2

1

1 ,
n

i
i

RMS e
n 

  (6)

where n is the total number of error points and e the ith

respective error value
The calculated RMS values for square and sin references

are exposed in Table I. The table shows the information
quantified in encoder counts.

TABLE I. RMS VALUES.
EHW Driver Kp(AG) driver

Square reference 0.3564 0.3879
Sin Reference 0.0188 0.0189

In general, to the square reference (Fig. 11) the RMS
difference between the EHW and the GA proportional driver
is 0.0315 (Table I), and to the Sin reference is just 0.0001,
indicating that the EHW was superior in the first case and
equal to the GA proportional in the second case.
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Fig. 11. Temporal response of the position signal.

Fig. 12. Temporal response of the error signal. Graphical analysis (square reference).

Fig. 13. Temporal response of the position signal.

57



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 3, 2014

Fig. 14. Temporal response of the error signal. Graphical analysis (sin reference).

V. CONCLUSIONS

A practical experiment involving a novel design
technique for a nonlinear damped pendulum driver was
implemented and described in this paper. Starting with a
functional criterion to build a driver (a black box approach),
a physical system was built to test and generate data to
evaluate the actual performance.

When dealing with a nonlinear problem designing
nonlinear solutions the evolutionary method shows to be
competitive in real environment tests, in this particular case
(evolved versus proportional AG control). The empirical
process generates a driver with nonlinear behaviour,
modelled to fit in actual pendulum system and produce
control signals more adapted to the problem.

The collected data in the tests show a better performance
to the EHW driver, 8,12 % better than Kp(AG) to the square
reference (Table I). Concerning the Sin reference the both
methods achieved the same performance.

Despite the problems with limited scalability of EHW
systems, the results show that this technique is a promising
perspective that deserves careful attention. As a perspective,
we aim to implement the system using the Proportional
Derivative control and the EHW equivalent driver to take
data for new analysis.
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