Combining DVR and UPS Techniques for an Uninterruptable Supply of Ultra-Sensitive Non-Linear Appliances

Branišlav Dobrucky*, Jozef Sedo, Roman Konarik
Department of Mechatronics and Electronics, Faculty of Electrical Engineering, University of Zilina, Univerzítina St. 1, SK-01026 Zilina, Slovakia
branislav.dobrucky@fel.uniza.sk

Abstract—The paper deals with an application of combined techniques of dynamical voltage restorer (DVR) and uninterruptible power supply (UPS) that make possible both the short voltage sags compensation, as well as longer power supply interruptions, under the simultaneous operation of equipment and network. This is enabled mainly by an instantaneous voltage sag detection, quick bidirectional over-switches, and an instantaneous control method of the output voltage. This needs a fast control method, which can provide a voltage recovery for phase-sensitive loads during several calculation steps, so the dead-beat regulator is used. Such a system even compensates for the influence of non-linear loads on the power supply network without a change of a phase and amplitude of the supply voltage. The simulation results in Matlab/Simulink, as well as real experiments and their comparison results, are given in the paper.

Index Terms—DVR device; Uninterruptible power supply; VSI converter; Quasi-instantaneous control; Dead-beat controller.

I. INTRODUCTION

There are many continuous production plants, such as glass production, car body paint shops, and computer tomography supply [1]–[4]. In those, the secure operation is provided by sensitive devices, among which we can include phase-sensitive appliances, such as controlled rectifiers, phase-locked loops (PLLs), selsyns and resolver devices, directly fed synchronous motors, etc. [5]–[7].

All these devices are very sensitive to voltage dips and sags occurring in distribution networks. Common means against this type of the failures are dynamic voltage restorers (DVRs), which are usually designed and dimensioned to hundreds of milliseconds for ensuring reliable operation (typically 150 ms–180 ms) [8]–[10]. Against interruption and loss of supply voltage the uninterruptible power supplies (UPSs) are used which to unlike the previous ones, are designed for hours of continuous operation using accum-battery as an accumulated source of energy [11]–[15]. So, each device from [8]–[10] and [11]–[15] provides compensation for different types of failures of supply for ultra-sensitive appliances. So far, there is no equipment, which would comprise requests provided by both DVR and UPS devices.

II. A NEW CONCEPT OF IMPROVING RELIABILITY OF SENSITIVE APPLIANCE SUPPLY

A. Using of DVR Restorer Device to Short-Term Sags Compensation

The single-pole block diagram of the dynamic voltage restorer is presented in Fig. 1 and Fig. 2. The short-term sags of supply voltage are reliably compensated by the DVR system.

![Fig. 1. Block diagram of DVR restorer (normal operation: full line; restoring operation: dashed line).](image1)

![Fig. 2. Block diagram of DVR restorer (normal operation: full line; restoring operation: dashed line).](image2)

Important notes:
1. Neither a galvanic connection between network and DVR device cannot be interrupted nor shorted because of the current circuit would not be closed.
2. The capacitor of DVR should be continuously charged by an external source, e.g., a solar photovoltaic (PV)
system [13], [16].

B. Using of UPS Device for Uninterruptible Power Supplying of Sensitive Appliances

The single-pole block diagram of an uninterruptible power supply is presented in Fig. 3.

![Fig. 3. Principle block diagram of UPS supply.](image)

The accu-battery of the UPS system can be charged by either network charger or solar PV system as in the previous case.

Generally, the UPS can be operated as:
- Cold reserve;
- Hot reserve.

Anyway, it should be designed with overload capability presented by crest factor, i.e., by the ratio of the maximum and the effective (rms) value of the current (usually 2–5) to withstand overload when step-starting-up and changing load [11], [16]. As can be seen from Fig. 4, neither cold nor hot reserved UPS cannot provide to compensate requested voltage sags interruption in all possible cases.

![Fig. 4. The step-change of linear R-L load from 0 to 100 %.](image)

In both systems A and B, the critical part is the detection of voltage sags because it should be very fast [17]–[22], [33]. One of the most effective approaches is based on sensing of d-q voltages and consequently comparing to referenced values (Fig. 5).

![Fig. 5. Determination of instantaneous voltage in d-q coordinates.](image)

System d-q voltage determination is as follows

\[
\begin{bmatrix}
v_d \\
v_q
\end{bmatrix} = e^{j\omega t} \begin{bmatrix}
v_\alpha \\
v_\beta
\end{bmatrix} = \begin{bmatrix}
\sin(\omega t) & \cos(\omega t) \\
\cos(\omega t) & -\sin(\omega t)
\end{bmatrix} \begin{bmatrix}
v_1 \\
v_2
\end{bmatrix},
\]

where \(v_d\) and \(v_q\) will be constants, and the module of a d-q voltage will be also a constant (DC) value

\[
v_{ref} = \sqrt{v_1^2 + v_2^2} = \sqrt{v_\alpha^2 + v_\beta^2} = \text{const.}
\]

So, consequently compared actual and reference values can be provided by a single voltage comparator.

C. A New Concept of Improving Reliability under Non-linear Loads

A new concept of improving the reliability of sensitive appliance supply has been proposed, which combines both DVR and UPS techniques mentioned above. The concept is based on the following ideas:

- Both energetic sources will be operated in parallel, so during switching-off of their failure part, no time delay will occur;
- Sensitive devices will be permanently connected to the UPS, so no start-up transient problems will arise thanks to the fast dead-beat current controller of UPS part;
- The current distribution between the power supply and the UPS will be 1:1 maintained by the UPS voltage control system.

The single-pole block diagram of a new concept of improving reliability is presented in Fig. 6.

![Fig. 6. (a) New concept block diagram combining DVR and UPS techniques, and (b) DB controlled UPS (\(R_i\) — current controller type of dead-beat).](image)

The simulation experiments of this scheme and simulation results are given in Section III.

D. Estimated a Mean Time between Failures - Improving Reliability

Regarding UPS operation, as stated, neither booked nor cold or hot booked UPS need to provide compensation for the interruption of the required voltage drop caused by some transient phenomenon (Fig. 3), which could lead to
malfuctioning of the sensitive load and interruption of supply. On the other hand, if the UPS is equipped with a battery of adequate capacity, even faulty network operation may not lead to a loss of power supply for sensitive loads, since the energy required by the sensitive load will be provided by the battery (Fig. 7).

A device with several independent power supplies has the best reliability of operation, but this is the most expensive solution [23], [24]. The UPS connection has a better operational reliability value $R(t)$ than a single power supply. The UPS application with battery can increase the mean time between failures (MTBF) by 3.94 times. The new conceptual solution with UPS, battery packs, and instant DBC control achieves up to MTBF of two parallel power supplies (approximately 10^6 hours), far more than a single UPS solution (approximately 10^5 hours) [25].

III. Modeling and Simulation

The actual Simulink schematic is shown in Fig. 8. The sensitive non-linear appliance is presented by a rectifier with a capacitive output filter [15], [28].

A. Design of Inner Control Loop - Non-Linear Load

If the load is non-linear (non-harmonic), a novel approach with a proportional integral (PI) controller (outer voltage loop) and a DB controller (inner current loop) should be used [26], [27]. Generally, we do not know the nature of the load supposing non-linear one. Since we know the disturbance variable $u_{out}(k)$ itself, we can compensate its influence (the error will be zero) by adding the $u_{out}(k)$ to the output signal of the controller. Then, we can define the current loop control algorithm as

$$v_{a_{-\text{ref}}} (k) = DB[i_{\text{Lref}} (k) - i_L (k)] + v_{\text{out}} (k),$$

where i_{Lref} is the inductor current reference value, $i_L(k)$ is the inductance actual value, $v_{\text{out}}(k)$ is the actual output voltage value, $v_{a_{-\text{ref}}}(k)$ is the calculated voltage value that enters the pulse-width modulation (PWM) modulator as a modulation signal (Fig. 9(a)).

As shown in Fig. 9(b), the current loop has been simplified by compensating for the effect of the output voltage. We get a single-loop current circuit with a dead-beat controller has the following characteristics:

- Zero regulatory deviation;
- Minimum start-up time;
- The minimum period of regulation, supposing that the variable can reach high values.

The input to the controller design is the transfer function of the continuous plant

$$G_p(s) = b_n s^n + \cdots + b_1 s + b_0 e^{-Ds},$$

where a_n, b_n are continuous transfer coefficients and D is a traffic delay. When transferring discretization, we use the zero-order hold [29]. The discrete form of the transfer function is
\[G_p(z) = \frac{B(z)}{A(z)} = \frac{b_1 z^{-1} + \ldots + b_m z^{-m}}{1 + a_1 z^{-1} + \ldots + a_m z^{-m}} = Y(z) \]

\[U(z) \]

The design of the controller is based on the system model shown in Fig. 9(b). Specific parameter values are:

\[- \Delta T = 40 \, \text{[μs]} \]
\[- L = 1.3 \, \text{[mH]} \]

The transfer function of a continuous model will be

\[G_p(s) = \frac{1}{sL} \cdot \frac{1}{0.0013 s} \]

Using definition relations of z-transform, we get a discrete transfer function

\[G_p(z) = \frac{0.03077}{z-1}, \text{resp. } \frac{0.03077 z}{z-1} or \frac{0.03077 (z+1)}{2 (z-1)} \]

Using the previously described relationships, we get the coefficients of the regulator

\[G_R(z) = \frac{32.5 z - 32.5}{z-1} \]

or others depending on \(G_p(z) \) as given in (7).

The total transmission of the closed-loop control is

\[G_{YH}(z) = \frac{G_R(z) G_p(z)}{1 + G_R(z) G_p(z)} = \frac{1}{z} \]

where do we get the difference equation

\[u(k) = q_0 e(k) + q_1 e(k-1) + \ldots + q_m e(k-m) + p_1 u(k-1) + p_2 u(k-2) + \ldots + p_m u(k-m) \]

To verify the correctness of the design of this controller, we performed a simulation analysis in Matlab/Simulink (see Fig. 10).

B. Design of Outer Control Loop - Voltage Loop

Since the load dynamics are unknown to us, the load current behaves as a failure quantity acting on the inverter output voltage. Therefore, we can take this current as a feedback signal and add it to the control variable. This eliminates the failure effect on the output voltage and the resulting voltage loop is simplified (Fig. 12) [29]–[32].

![Fig. 10. The control scheme for confirmation of DB regulator design.](image)

![Fig. 11. The response of manipulating variable to step-change of reference value.](image)

![Fig. 12. Block diagram: (a) voltage loop, (b) simplified voltage loop.](image)

Since we used the dead-beat controller to design the controller for the internal current loop, which monitors the reference signal with the least delay, we can neglect its dynamics in the design of the voltage loop and consider this loop constant. Then, the voltage loop control algorithm is defined by

\[i_{ref} = \frac{K_p}{sT_i} \left(v_{ref}(k) - v_{out}(k) \right) + i_{out}(k) \]

wherein \(v_{ref}(k) \) represents a sinusoidal reference signal for a voltage loop and \(i_{ref}(k) \) represents a reference signal for an internal current loop.

We do regulator synthesis using the pole placement method described in [31], [32]. The main idea behind this method is to force the transmission of the system to the poles chosen by us to determine its dynamic behavior. The disadvantage is that the method does not specify a system reader. Therefore, any zeros of the transfer may aggravate its dynamics. Therefore, we will also introduce compensation for the effect of these zeros on the system.

The general \(n \)-th order transfer is defined by the relation (12), and the \(n \)-th order general controller transfer is defined by the relation (13):

\[G_p(s) = \frac{b_{n-1} s^{n-1} + \ldots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0} \]

\[G_R(s) = \frac{d_m s^m + \ldots + d_1 s + d_0}{s^n + c_{m-1} s^{m-1} + \ldots + c_1 s + c_0} \]
The control circuit transmission is then given by the feedback circuit $G_o(s)$ and $G_p(s)$

$$G(s) = \frac{G_R(s)G_p(s)}{1 + G_R(s)G_p(s)}.$$ \hspace{1cm} (14)

We place a characteristic equation $G(s)$ equal to the general transmission of the same order as the characteristic equation

$$s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 = 0$$

By comparing the coefficients of the polynomials on the left and right sides of the relationship (15) we get a system of n equations, from which we calculate unknown parameters of the regulator, which act as unknown in the coefficients $a_{n-1}, ..., a_0$. An undesirable zero in the numerator appears in the transmission of the system causing the output quantity overshoots. We, therefore, compensate for this zero. Then, the control scheme changes as shown in Fig. 13 [29], [31], [32].

![Fig. 13. Compensation of zero of the transfer function.](image)

The regulated system is represented by the simple feedback circuit of Fig. 12. Then, the transmission of the system is given as (relationship assistance)

$$G_p(s) = \frac{1}{sC} = \frac{1}{24.7 \times 10^{-6} s}.$$ \hspace{1cm} (16)

As a controller, we have selected a PI controller, whose relationship is given by (17)

$$G_R(s) = \frac{K_pT_i s + K_p}{T_i s}.$$ \hspace{1cm} (17)

The resulting control circuit transfer is given by the relationship

$$G(s) = \frac{G_R(s)G_p(s)}{1 + G_R(s)G_p(s)} = \frac{K_p}{T_i C} (\frac{1}{s^2 + \frac{K_p}{T_i C}} + \frac{K_p}{s T_i C}).$$ \hspace{1cm} (18)

According to this, we introduce the transfer zero compensation $G(s)$. Then, the relationship is to be

$$G(s) = \frac{1}{T_i s + 1} \times \frac{G_R(s)G_p(s)}{1 + G_R(s)G_p(s)} = \frac{1}{T_i s + 1} \times \frac{K_p}{T_i C} (\frac{1}{s^2 + \frac{K_p}{T_i C}} + \frac{K_p}{s T_i C}).$$ \hspace{1cm} (19)

The second-order transfer function is defined as

$$s^2 + 2\xi \omega_0 s + \omega_0^2.$$ \hspace{1cm} (20)

By comparing the transmission coefficients of our system to the second-order system, we obtain the resulting coefficients of the PI controller (K_p the gain and T_i the time constant):

$$K_p = 2C \xi \omega_0,$$ \hspace{1cm} (21)

$$T_i = \frac{K_p}{\omega_0^2 C}.$$ \hspace{1cm} (22)

where, ξ represents the damping of the circuit, ω_0 is the natural frequency of the circuit. This can be defined by the Dodds relationship [16], [31]. This is defined by the relationship

$$T_{reg} = 1.5(1 + n) \frac{1}{\omega_0}.$$ \hspace{1cm} (23)

Then, the natural frequency is expressed as

$$\omega_0 = 1.5(1 + n) \frac{1}{T_{reg}}.$$ \hspace{1cm} (24)

Settling time T_{reg} we determined from simulation experiments. We set its value to 0.01×10^3 s. After substituting this value into the previous relations, we get the gain values $K_p = 22.23$ and the value of the time integration constant $T_i = 4.4 \times 10^{-6}$ s:

$$G_R(s) = \frac{9.81 \times 10^{-5} s + 22.3}{4.4 \times 10^{-6} s},$$ \hspace{1cm} (25)

$$G_{KOMP}(s) = \frac{1}{4.4 \times 10^{-6} s + 1}.$$ \hspace{1cm} (26)

The whole control circuit transfer is then given by feedback of $G_R(s)$, $G_p(s)$, and $G_{KOMP}(s)$

$$G(s) = G_{KOMP}(s) \frac{G_R(s)G_p(s)}{1 + G_R(s)G_p(s)}.$$ \hspace{1cm} (27)

For use in our proposed control structure, we still need to design the PI controller and zero compensator to be discrete. When transferring, we use zero-order shaper. Then, the controller and compensator transmission has the form:

$$G_R(z) = \frac{22.30 z + 177.84}{z - 1},$$ \hspace{1cm} (28)

$$G_{KOMP}(z) = \frac{0.999}{z - 1.23 \times 10^{-4}}.$$ \hspace{1cm} (29)

And a plant transfer

$$G_p(z) = \frac{40 \times 10^{-6}}{24.7 \times 10^{-6} z - 1} = \frac{1.62}{z - 1}.$$ \hspace{1cm} (30)

Then, the whole control circuit transfer is given by
feedback of \(G_d(z) \), \(G_p(z) \), and \(G_{KOMP}(z) \)

\[
G(z) = G_{KOMP}(z) \frac{G_R(z)G_P(z)}{1 + G_R(z)G_P(z)}.
\] (31)

Note: In the practical implementation of digital control by employing a microcomputer, the transfer function of the \(G_d(z) \) the controller is not used, but is converted to a difference equation.

IV. SIMULATION RESULTS AND EXPERIMENTAL VERIFICATION

The experimental setup follows the configuration in Fig. 6(a) and its Simulink diagram in Fig. 8. The UPS stage comprises single-phase insulated-gate bipolar transistor (IGBT) VSI fed by accu-battery (AB) or by the network. The bidirectional switches integrated bootstrap diode (BSD) are anti-reverse connected IGBT, similarly to those used in matrix converters. The load \(L \) was presented either linear pure resistive or resistive-inductive ones or capacitive rectifier as non-linear one.

Simulation results for linear and non-linear load - capacitive rectifier are shown in Figs. 14–18. To control the experiments, the digital signal controller (DSC) of Texas Instruments TMS320F28335 was used [34]. The LEM sensor LV25-P has been used as the voltage and the Honeywell CSNR151 as a current sensor.

System parameters used for simulation and experimental verification:
- DC link voltage \(V_{DC} = 670 \) V;
- Output voltage \(V_{output} = 110 \) V;
- Output power \(P_{out} = 1 \) kW;
- Filter inductance \(L_{filter} = 1.3 \) mH;
- Filter capacity \(C_{filter} = 24.7 \) μF;
- Base frequency \(f_{base} = 50 \) Hz;
- Load resistor \(R = 5.98 \) Ω;
- Load inductance \(L = 33.5 \) mH.

Sampling and switching frequency are equal to 25 kHz.

A. Parallel Operation of the UPS and Network

Simulation of grid voltage disconnection presenting the step-change of linear resistive load from 50 % to 100 % during the parallel operation of the UPS and network is shown in Fig. 14.

Simulation of grid voltage disconnection presenting the step-change of linear inductive load from 50 % to 100 % during the parallel operation of the UPS and network is shown in Fig. 15.

Fig. 15. The step-change of linear inductive load from 50 % to 100 % at the maximum of the \(V_{load} \).

B. Non-Linear Load - Capacitive Rectifier

Simulation results of grid voltage disconnection presenting the step change of non-linear load from 50 % to 100 % during the parallel operation of the UPS and network are shown in Fig. 16. The step-change is done at the maximum of the \(V_{load} = V_{reg} \) from 50 % to 100 % of the load.

Fig. 16. Output voltage and current during parallel operation of the UPS (with DB controller) and network under capacitive rectifier of 50 %–100 % load.

C. Linear Load - Resistive and Inductive Ones: Step-Changes of the Load from 0 % to 100 %

Simulation of a step-change of linear resistive load from 0 % to 100 % is shown in Fig. 17.

Fig. 17. The step-change of linear resistive load from 0 % to 100 %.

Legend: \(x \): time \([s]\); \(y \): \(V_{load} \), \(V_{reg} \), \(i_{load} \), \(i_{reg} \) [A]
Simulation of step-change of linear inductive load from 0 % to 100 % is shown in Fig. 18.

![Fig. 18. Step-change of linear inductive load from 0 % to 100 %](image)

Legend: x: time [s]; y: v_{load} [V], i_{load} [A]

Experiment of the step-change of linear inductive load from 0 % to 100 % is shown in Fig. 19.

![Fig. 19. Step-change of linear resistive load from 0 % to 100 %](image)

Legend: x: time [s]; y: v_{load} [V], i_{load} [A]

Experiment of the step-change of linear resistive load from 0 % to 100 % is shown in Fig. 20.

![Fig. 20. Step-change of linear inductive load from 0 % to 100 %](image)

Legend: x: time [s]; y: v_{load} [V], i_{load} [A]

The authors declare that they have no conflicts of interest.

REFERENCES

