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1Abstract—The article discusses the issue of creating an 

environment’s map with semantic division of areas. This 

simplifies some aspects of mobile robot control and permits the 

robot to carry out tasks issued in a human-understandable 

form. The article presents an innovative algorithm for mapping 

the environment by a mobile robot. Its novelty stems from the 

use of a semantic description of the world and Delaunay 

triangulation method with constraints. This description is used 

to segment the map of the environment and to reduce 

redundant information. The developed algorithm is based on 

the idea of extending the borders of the already discovered 

areas; they are expanded as the new data are collected from the 

environment. These data contain information about the 

location of semantic types in the explored space and is used to 

update the areas during analysis of the environment’s map. 

The beforementioned triangulation method is used in that 

process. The performance of the proposed algorithm is tested 

in simulation studies. The obtained results show a good 

computational efficiency of the method, which is crucial in the 

problem of environment exploration by mobile robots with 

limited computational resources. 

 
 Index Terms—Mobile robot; Environment mapping; 

Semantic segmentation; Computational geometry. 

I. INTRODUCTION 

Continuous development of automated systems, including 

mobile robotics, encourages scientists to develop 

sophisticated solutions [1]. Ultimately, this will allow robots 

to serve as a personal aid in everyday tasks. A basic 

requirement, however, is the robot’s ability to reason like 

humans [2], including the ability to move in their 

environment. This, in turn, is associated with problems of 

navigation and path planning, which depend on the 

environment that either has already been discovered or is 

just being explored [3]. In recent years, scientists have 

developed various solutions that can be divided into three 

main areas that define the scope of current research. 

The first area is related to the acquisition of semantic 

information from sensory data. Problems encountered in this 

area often belong to the signal domain, i.e., processing, 

analysis, and segmentation. As a result, an abstract 

representation of the measurement space is expected. For 
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example, in [4], the authors use the AdaBoost method to 

generate a space classifier for geometric features obtained 

by a laser scanner. In [5], an algorithm for acquiring a three-

dimensional semantic model from a point cloud is 

developed. The use of convolution networks for recognition 

of semantics from camera images is proposed in [6]. 

The second area is focused on the application of 

semantics acquisition techniques in the process of 

simultaneous localization of a mobile robot in the 

environment and mapping of this space (SLAM). The 

robot’s movement causes sensory data to be collected from 

different positions. This means that there is a problem of 

combining the gathered information into a coherent map of 

the explored environment. For example, in [7], the authors 

improve the FastSLAM 2.0 algorithm with an extractor of 

regional features. The article [8] presents a comprehensive 

solution that builds a 3D map based on a multistage analysis 

of a point cloud. The authors in [9] develop a hybrid method 

of mapping relative spatial correlations and Bayesian 

inference about self-localization. In [10], the authors 

propose introduction of semantic information into the 

optimization process of an environmental map based on the 

highest probability function. 

The third focus discusses the use of acquired semantic 

models in decision-making processes for planning task 

realization. This issue often utilizes artificial intelligence 

techniques to solve the problem. The solution presented in 

[11] shows a model consisting of a spatial and conceptual 

part, and the methodology of using it in planning processes. 

In [12], the use of an environmental map with a defined 

probabilistic distribution of objects to determine the 

probable location of a sought object of a known type is 

discussed. The work [13] discusses the interpretation of 

natural language commands in the robot’s workspace. 

The following paper focuses on the aspect of an efficient 

environment mapping with an abstract layer. As a solution 

to this problem, an algorithm developed by the authors is 

proposed to generate a metric-semantic model of space 

explored by a mobile robot. The Delaunay triangulation 

algorithm [14] and its variant with constraints [15] are used 

in this method. Similarly, to [16], the Delaunay triangulation 

is used as a backbone of an environment map, which is 
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explored by the robot. However, in contrast to the 

beforementioned article, the issue of path planning is not 

considered - the path is predetermined and focus is put 

entirely on the semantic analysis of the environment. 

The article is organised as follows. In Section II, a 

description of the problem is given, as well as the details of 

the proposed method of the environmental mapping. Section 

III lists the simulation assumptions and presents research 

results. Finally, conclusions and a plan for further work are 

presented in Section IV. 

II. METHOD DESCRIPTION 

A. Problem Formulation 

A mobile robot located in the two-dimensional Cartesian 

space of the world map Mw has the task of mapping its 

surroundings by moving along the given path points Pd, 

creating its own representation of the robot map Mr. This 

problem is shown in Fig. 1. 

 
Fig. 1.  The problem of environment mapping by a mobile robot. 

The map 
1 2

{ , ,..., }
nW W W WM z z z  is a set of n semantic 

zones zw. Each zone zw is a tuple ( , )W Wz P s and has a 

semantic descriptor s from the set 
1 2{ , ,..., }t gS s s s and a 

set 
1{ , }W hP p p that contains two points describing a 

rectangular area. The semantic set St has a defined number g 

types of space. The use of such description simplifies the 

sensory aspect to reading information from the explored 

environment without the need to implement segmentation of 

this data. 

B. Proposed Solution 

In the proposed method, the mobile robot is treated as a 

discrete system. This means that it measures the 

environment at given Pd points, and the obtained 

information Us is quantised. These data points are used to 

determine correlations between them and the existing sets zr 

of the Mr map. This is used to extend borders of the areas 

already explored or to discover unknown regions of the 

environment. The overall concept is presented in Fig. 2. 

The constructed map 
1 2

{ , ,..., }
mr r r rM z z z  consists of m 

discovered areas zr, which are semantically consistent with 

the definition of the world Mw. This map is characterized by 

the existence of transition areas between the adjacent zones. 

These areas are interpreted as a semantically undefined 

space. The shape of each zone ( , )r rz P s is defined by an 

associated set of boundary points
1 2{ , ,..., }r uP p p p of the 

varying size u. 

 
Fig. 2.  The idea of the proposed mapping algorithm. 

In the proposed algorithm we can distinguish the 

acquisition process of the semantic data Us that is realized 

for a given position Pd at time 1, dk P . This set consists 

of elements ( , )su p s , where each is a single 

environmental measurement and contains the spatial 

location ( , )p x y  of semantic information s. 

Another key element of the method is the analysis of 

correlated combination of the examined space Mr with 

measurements Us and reduction of excess information. This 

operation is represented as   in the equation below 

 ( ) ( 1) ( ( ))r r s dM k M k U P k   , (1) 

where the result is a new representation of the explored 

environment. The process of merging the Mr and Us 

datasets is done by using semantic matching and Delaunay 

triangulation. The first step in the combining process is to 

analyze the location of sensory data Us in relation to the 

boundaries of the explored areas. After adding them to the 

Mr space, the existing boundaries are modified using 

geometrical relations. A modified set of discovered map 

points and a newly defined boundary are used to generate a 

triangulation grid. The resulting mesh of relations between 

nodes allows defining the updated areas of the Mr map 

according to their semantic correspondence.  

Delaunay triangulation is characterized by the generation 

of meshes according to the principle of uniform 

maximization of angles in triangles. This creates zones with 

largest areas increasing the probability of sensory data 

inclusion in fewer triangles and accelerates the correlation 

analysis process. As a convex grid must be generated in 

each step of triangulation, it is necessary to use an 

algorithm, in which constraints could be applied. These 

constraints allow to differentiate between triangles within 

the explored space and those belonging to the undiscovered 

one. 

Figure 3 shows the triangulation problem; the borders of 
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the discovered areas are marked by a solid black line. 

Relations between the measurement nodes of the same 

semantic type are given in light grey. Connections between 

the zones of differing types are depicted in dark grey. The 

shape, visible in Fig. 3, is a consequence of the 

predetermined circular path executed by the mobile robot. 

Both boundaries (i.e., inner and outer) are a direct result of 

processing the data acquired during that motion. 

 
Fig. 3.  Convex triangulation problem and semantic correlation. 

The information reduction phase also uses the 

methodology from the data merging process to eliminate 

points inside the areas and remove some of the transition 

points. Internal points are analyzed for semantic 

correspondence with their neighboring nodes. They are 

removed when all their connections are of the same type. 

The selection of transition points is based on the distance to 

the nearest adjacent transition node. This results in retaining 

the point in question if it is the closest one among its 

neighbors, which identical semantic descriptor to a zone of 

another type. 

III. RESULTS 

A. Simulation Assumptions 

To verify correctness and efficiency of the mapping 

algorithm the following test conditions were assumed: 

 A simulated mobile robot with a virtual sensor moves 

along the path points in a 2D space, which was set up to 

represent a single-family home environment [17]; 

 Sensor placed on the robot returns the semantic 

information about characteristic points of the robot’s 

environment in eight world directions. Measurement 

range is limited and analyzing the space behind opaque 

obstacles, such as walls or fences, is impossible. This is in 

contrast to windows, which do not block the sensory 

measurement; 

 The simulation process is carried out in a discrete way 

based on the given path points. Each step of the 

simulation generates a new map of the explored space 

based on the sensory data obtained and the already 

discovered map of the environment; 

 The research was carried out in Matlab 2018b, using a 

computer with the following specification: CPU – Intel 

Core i5-2430M 2.4 Ghz, RAM – 2x4 GB DDR3-1333 

CL9, GPU – Nvidia GeForce GT 520MX 1 GB, HD – 

SSD SATA 2. 

B. Experiment 

The following scenario of an environmental exploration 

was assumed in the study. A mobile robot located at the 

starting point (6, 21) moves clockwise in an octagonal 

circular motion. In each iteration, it moves by a random 

distance of <1, 1.1> meters. After every three steps, it 

changes the movement direction by 45 degrees. Such 

movement pattern requires 24 iterations of the mapping 

algorithm to complete the circular shape. The range of the 

sensor was set to 2 meters with a quantisation of 0.1 meter. 

The simulation was performed for 100 loops (i.e., path 

completions), which results in 2400 iterations of the 

environment mapping algorithm. 

Figure 4 illustrates a fragment of the explored space used 

for the experiment. The dashed black line marks the 

averaged path of the robot’s movement. Passages, such as 

stairs and doors, are marked in light grey, while barriers 

(i.e., walls) are shown in dark grey. The areas between these 

zones are described by the following semantic descriptors: 

garden, terrace, living room, and corridor. 

 
Fig. 4.  Simulation environment context. 

Table I shows the results of the simulation experiment.  

TABLE I. SIMULATION RESULTS. 

Algorithm 

iterations 

Loop 

Index 

Loop’s iterations 

mean time 

Transition zone 

mean width 

24 1 0.4140 s 0.2969 m 

48 2 0.6104 s 0.2173 m 

120 5 0.8492 s 0.1703 m 

240 10 1.0930 s 0.1246 m 

600 25 1.7021 s 0.0889 m 

1200 50 3.1697 s 0.0683 m 

2400 100 3.5932 s 0.0504 m 

 
The first column contains the number of iterations of the 

environmental mapping, i.e., how many times the proposed 

algorithm was executed. The second column defines the 

number of laps driven by the mobile robot, where one cycle 

takes 24 iterations of the exploration algorithm. The third 

column contains the average iteration time of the method for 

a specific loop (second column) and the last column shows 

the average width of transition zones between different 

types of map areas. 

The resulting representations of the environment map are 

shown in Fig. 5. Three different phases are presented, which 

were obtained after: 1, 25, and 100 exploratory loops. The 

black line marks the boundaries of the discovered areas, and 

the grey one depicts the path of robot’s motion. Small 

circular markers inside the largest boundary area indicate 
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the transition between different zones. The subfigures show 

that the gain in precision of the mapped environment is 

highest in the first iterations of the algorithm. This 

observation is supported by the data presented in Table I. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.   Environment maps generated by the proposed algorithm: (a) after 

24 iterations; (b) after 600 iterations; (c) after 2400 iterations. 

IV. CONCLUSIONS 

The simulation results prove the validity of the proposed 

method of environment mapping using semantic information 

and Delaunay triangulation. The presented algorithm was 

tested experimentally for spatial description of a semantic 

environment and was proven to be efficient. The obtained 

results show a tendency of the algorithm to take more time 

in subsequent iterations, which is caused by the increasing 

number of transition points. At the same time, the cyclic 

mapping of the examined space leads to a decrease in the 

transition zone size. 

In the future work, it is planned to further improve the 

process of information reduction and attempts will be made 

to adapt the proposed method to the problem of a real-world 

environment exploration. 
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