Outage Performance Analysis of Cell-Center/Edge Users Under Two Policies of Energy Harvesting

Dinh-Thuan Do¹,², Anh-Tu Lê³, Chi-Bao Lê³, Si-Phu Lê⁴, Hong-Nhu Nguyen⁴, Lukas Sevcik⁴, Miroslav Voznak³

¹Wireless Communications Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
²Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
³Faculty of Electronics Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
⁴VSB Technical University of Ostrava, 17. Listopadu St. 2172/15, 708 33 Ostrava-Poruba, Czech Republic
dodinhthuan@tdtu.edu.vn

Abstract—In this paper, two energy harvesting policies deploying in cooperative non-orthogonal multiple access (NOMA) systems are considered. After period of wireless power transfer, the NOMA users including cell-edge and cell-center users simultaneously transmit the superposition coded symbols to the base station (BS). In the last time slot, the BS decodes to achieve its signal based on superposition coded symbol with corresponding power allocation factors. This paper provides exact expressions of outage probability in two schemes. Performance gap of two NOMA users can be raised by providing different power allocation factors. It is confirmed by numerical result. Distance and data rate are main factors affecting outage performance. Scheme I exhibits scenario where power beacon transmits energy signal to NOMA user while the BS feeds energy to NOMA user in Scheme II. It is shown that outage performance of Scheme I is better than that of Scheme II.

Index Terms—Non-orthogonal multiple access; Power beacon; Energy harvesting; Outage performance.

I. INTRODUCTION

As a candidate for the 5G communication, a novel multiple access (MA) technique, named non-orthogonal multiple access (NOMA), has been widely investigated. Main advantages of NOMA include balanced user fairness, its superior spectral efficiency, massive connections, and low access latency [1]–[8]. It is proved that NOMA is introduced to address the spectral efficiency improvement compared with traditional multiple access schemes, i.e., orthogonal multiple access (OMA). Up to now, NOMA networks have been explored extensively in various system models. Generally, NOMA networks can be distributed into two classifications by employing spreading signature of MA: code-power NOMA (CD NOMA) and power-domain NOMA (PD NOMA). In contrast to frequency-division multiple access (FDMA) and time-division multiple access (TDMA) in conventional orthogonal multiple access (OMA) [9], NOMA examines the non-orthogonal resource distribution. That is how the key idea of NOMA to realize MA the power domain is exploited. As a result, different power levels are allocated to distinguished users at transmitter side [10]–[12]. At receiver side, to cancel the multiuser interference at the receiver, the successive interference cancellation (SIC) is assigned [13]. More specifically, the NOMA user associated with a worse channel condition needs to be allocated with higher power.

In addition, dangers related to batteries leakage and many of these energy-limited applications using batteries that cannot be substituted or re-energized are explored. Fortunately, recent research interest introduced energy harvesting as only one solution to tackle such a problem, though energy harvesting is that has generated a great deal applied in wireless sensor networks [14]–[18]. Compared to using traditional batteries in terms of batteries replacement and batteries external recharging, energy harvesting can exhibit essentially limitless energy. Therefore, to enhance spectrum efficiency and prolong the lifetime of the system, NOMA networks with energy-limited devices need to employ the efficient integration of energy harvesting with NOMA [19]–[21]. However, malicious energy harvesting receivers (EHRs) may exist and intercept the confidential transmitted information signals. As a result, security of energy harvesting-enabled NOMA systems need to be investigated due to the broadcasting nature of NOMA and RF signals [22]–[25]. The question is how to enlarge the amount of
harvested energy in such NOMA networks. Motivated by interesting results in [1], we develop two scenarios of energy harvesting to show different performance improvements in NOMA.

The reminder of our research work is organized as follows. The system model and policies of energy harvesting are presented in Section II. The exact outage probability of two schemes are provided in Section III and Section IV, and Section V presents simulation results. The paper concludes with Section VI.

II. SYSTEM MODEL AND ENERGY HARVESTING POLICIES IN NOMA

We consider new system model, as it is shown in Fig.1 and Fig. 2, containing three nodes (the base station denoted as BS, two NOMA users 1 and 2), which are deployed to serve two transmission scenarios in NOMA system. Regarding energy harvesting, energy harvesting policy with the specific scheme of Time Switching (TS)-based energy policy performs wireless charge to cell-edge user 1 and cell-center user 2 (i.e., 1, 2) (Fig.1 and Fig. 2). In Fig. 2, only cell-edge user 1 needs charge by wireless energy transfer. It is noted that TS is selected due to simpler hardware implementation in practice. In this model, a single-antenna half-duplex node is assumed at each node. The distance of link BS-1 and BS-2 are d1, d2 respectively, where d1 > d2 and these links follow quasi static-Rayleigh channel model, and the path loss exponent is denoted by m. We call 1, 2 as coefficients between BS and user 1 and BS and user 2, respectively. As there are many works in literature, these channels are assumed as independent components and they have zero mean and unit variance. Next, the BS has transmit power as P . In NOMA scheme, a, b are separated messages, which are sent by NOMA user 1 and NOMA user 2, respectively, in uplink for the first scenario. At each user, 1 and 2, noise terms are denoted as n1, n2 following \(CN\left(0, \sigma^2\right) \). They are the Additive White Gaussian Noise (AWGN) with equal variance \(\sigma^2 \).

This study considers two scenarios:

- **SCHEME I:** Power beacon charges energy to different NOMA users. Such NOMA users deploy harvested energy to transmit signal in uplink to the BS.
- **SCHEME II:** If there is not any help of power beacon, the BS transmits signal in downlink to two users in the first phase, then the BS charges energy to two users in the second phase. At the third phase, users intend to transmit signal in uplink to the BS. Scheme II is similar model with detailed presentation as in [1].

III. SCHEME I: POWER BEACON-BASED ENERGY HARVESTING NOMA

A. First Phase: Energy Harvesting

To serve signal transmission in following epoch, the NOMA user can be able to harvest energy from the power beacon. Such technique enables wireless power charge for both NOMA users. By denoting x as energy-bearing signal at NOMA user 1, we obtain the received signal as

\[
y_{1,EH} = \sqrt{\frac{P_x h_a}{d_a^m}} + n_u. \tag{1}
\]

Similarly, the received signal for energy collection at NOMA user 2 is expressed by

\[
y_{2,EH} = \sqrt{\frac{P_x h_b}{d_b^m}} + n_u. \tag{2}
\]

Regarding to wireless power transfer scheme, time allocation for energy harvesting phase is \(T/2 \) and the amount of harvested energy is computed by

\[
E_a^T = \left(\frac{\eta P h_a^2}{d_a^m} + \frac{\eta P h_b^2}{d_b^m}\right) T/2. \tag{3}
\]

Following the principle of energy harvesting [14–19], the harvested power is given by

\[
P_{a,EH} = \frac{\eta P h_a^2}{d_a^m}, \tag{4}
\]

where \(\eta \) is the energy conversion efficiency and it depends on hardware circuits (\(0 < \eta < 1 \)). Similarly, the energy harvested at 2 is given as follows

\[
P_{b,EH} = \frac{\eta P h_b^2}{d_b^m}. \tag{5}
\]

Remark 1: It is noted that the amount of harvested energy at 1 is higher than that of 2 because of different distances to the power beacon, which result in better channel power gain.

B. Second Phase: Uplink NOMA

Next, we deploy uplink for NOMA transmission in the
second phase using harvested power for signal transmission. By using harvested power, \(P_{a,EHP} \) and \(P_{b,EHP} \) are employed to transmit signal in the uplink, respectively. The received NOMA signal can be obtained as

\[
y_c = \sqrt{P_{a,EHP} \gamma_x g_a} + \sqrt{P_{b,EHP} \gamma_x g_b} + n_s,\tag{6}
\]

where \(n_s \) follows \(CN \in (0; \sigma^2) \) and it denotes the AWGN at the BS with variance \(\sigma^2 \) while \(\gamma_x \) and \(\gamma_x' \) are the uplink signal from \(U_1 \) and \(U_2 \), respectively.

In this case of NOMA, SIC is performed at BS to identify individual user’s message. In particular, considered signals \((\gamma_x' \text{ and } \gamma_x) \) are decoded and decoding order. Such decoding operation is performed by distinguishing different received power levels. It is worth noting that the message with \((P_{a,EHP} \text{ is decoded first as it has the higher power, then the message with lower power} (P_{b,EHP}) \text{ is decoded. Therefore, the BS has signal to interference plus noise ratio (SINR) and it is given as}

\[
\gamma_{U_1} = \frac{|g_a|^2 P_{a,EHP}}{\|g_b\|^2 P_{b,EHP} d_m^m + \sigma^2}.\tag{7}
\]

By replacing \(P_{a,EHP} \) and \(P_{b,EHP} \) from (3) and (4) in above equation, new expression is

\[
\gamma_{U_1} = \frac{\eta \rho |h_a|^2 |g_a|^2}{\eta \rho |h_b|^2 |g_b|^2 d_m^m d_m^m + d_m^m}.\tag{8}
\]

Then, the BS subtracts noise term from the received signal after success decoding \(\gamma_x \). Next, it continues to decode \(\gamma_x' \). Similarly, to decode \(\gamma_x' \), we compute the SINR at BS as such

\[
\gamma_{U_2} = \frac{|g_a|^2 |g_a'|^2}{d_m^m}.\tag{9}
\]

As a result, it is transcribed as

\[
\gamma_{U_2} = \frac{\eta \rho |h_a|^2 |g_a|^2}{d_m^m}.\tag{10}
\]

C. Outage Performance Analysis in Scheme I

In this section, the outage probability is main metric considered in our proposed model. The outage performance is defined in many works \([14–17]\). We now consider outage probability for such NOMA transmission as below.

We first compute outage probability at the BS for \(\gamma_x' \) and it can be expressed as below.

Firstly, outage event of \(\gamma_x' \) is defined by

\[
OP_{\gamma_x'}^{U_1} = 1 - \Pr \left(\gamma_{U_1} > \phi_{U_1}^{\gamma_x'} \right) .\tag{11}
\]

It can be re-expressed by

\[
OP_{\gamma_x'}^{U_1} = \Pr \left(\frac{\eta \rho |h_a|^2 |g_a|^2}{\eta \rho |h_b|^2 |g_b|^2 d_m^m d_m^m + d_m^m} < \phi_{U_1}^{\gamma_x'} \right) .\tag{12}
\]

Interestingly, by considering exponential distribution for \(|h_a|^2 \) and \(|h_b|^2 \) with respect to integration variables \(x, y \), the Cumulative Distribution Function (CDF) and Probability Density Function (PDF) of \(|h_a|^2 |g_a|^2 \) are defined as follows:

\[
F_{|h_a|^2 |g_a|^2} (x) = 1 - 2 \int_{\lambda_a}^{\infty} K_0 \left(2 \sqrt{\frac{x}{\lambda_a}} \right),\tag{13}
\]

\[
f_{|h_a|^2 |g_a|^2} (x) = \frac{2}{\lambda_a} K_0 \left(2 \sqrt{\frac{x}{\lambda_a}} \right),\tag{14}
\]

where \(\lambda_a = \frac{\eta \rho}{d_m^m} \), \(\lambda_b = \frac{\eta \rho}{d_m^m} \), and \(\phi_{U_1}^{\gamma_x'} = 2^{\phi_{U_1}^s} - 1 \) is the required threshold SINR to decode related signal at BS, i.e., \(\gamma_x' \) sent by \(U_1 \). Hence, we can further simplify \(OP_{\gamma_x'}^{U_1} \) as follows

\[
OP_{\gamma_x'}^{U_1} = 1 - \frac{2}{\lambda_b} \int_{\phi_{U_1}^{\gamma_x'}}^{\infty} K_0 \left(2 \sqrt{\frac{\phi_{U_1}^{\gamma_x'}}{\lambda_b}} \right) x dz\tag{15}
\]

where \(K_i(.) \) is the Bessel function of first order second kind.

Then, the outage performance at the BS for \(\gamma_x' \) can be computed as below.

Similarly, outage event of \(\gamma_x' \) is computed as

\[
OP_{\gamma_x'}^{U_2} = 1 - \Pr \left(\gamma_{U_2} > \phi_{U_2}^{\gamma_x'} \right) = \left(1 - \Pr \left(\frac{\eta \rho |h_a|^2 |g_a|^2}{d_m^m} > \phi_{U_2}^{\gamma_x'} \right) \right) \times \Pr \left(\frac{\eta \rho |h_a|^2 |g_a|^2}{d_m^m} > \phi_{U_2}^{\gamma_x'} \right) .\tag{16}
\]

It has to be noted that the successful decoding of \(\gamma_x' \) results in computing the outage at BS for \(\gamma_x' \). If we denote \(\phi_{U_2}^{\gamma_x'} = 2^{\phi_{U_2}^s} - 1 \) as the required threshold SINR to decode \(\gamma_x' \), at BS, then it can be achieved following the proposition.

Proposition 1: The exact expression of outage probability at BS for \(\gamma_x' \) is given by

\[
OP_{\gamma_x'}^{U_1} = 1 - \frac{4 \sqrt{2} K_0 \left(2 \sqrt{2} \phi_{U_1}^s \right)}{\lambda_b} \int_{0}^{\phi_{U_1}^{\gamma_x'}} \frac{2 \sqrt{2} \phi_{U_1}^s}{\lambda_b} \sqrt{z + 1} x dz.,\tag{17}
\]
By substituting ρ'_u from (6), we obtain

$$\gamma'_{x'_i} = \frac{\rho |h_b|^2}{\rho h_b^2 d_b + d_b^m}.$$

In this case, when x'_i is decoded successfully, the BS subtracts it from the received uplink signal and continues to detect x'_i. Hence, the SINR at the BS to detect x'_i is formulated by

$$\gamma'_{x'_i} = \frac{\rho |h_b|^2}{d_b^m}.$$

B. Outage Probability for Uplink NOMA Transmission in Scheme II

We first consider evaluation at the BS for x'_i and the related outage probability can be expressed as

$$OP_{x'_i} = 1 - \Pr (\gamma'_{x'_i} > \phi_{ul}^{kx}) =$$

$$1 - \Pr \left(\frac{\eta d_m}{\phi_{ul}^{kx} |h_b|^2 + d_b^m} > \phi_{ul}^{kx} \right) =$$

$$1 - \Pr \left(|h_b|^2 < \frac{\phi_{ul}^{kx} d_b^m - d_b^m}{\rho} \right).$$

where $\phi_{ul}^{kx} = \frac{\eta d_m}{\phi_{ul}^{kx} d_b^m}$, $\phi_{ul}^{kx} = \frac{d_b^m}{\rho}$ and the threshold SINR required at the BS is denoted as $\phi_{ul}^{kx} = 2^{kx} - 1$ to decode x'_i sent by U_1. Hence, we can further simplify I_1 as follows:

$$I_1 = \int_{x_1}^{x_2} \left[1 - e^{-\frac{\delta}{\rho} x_i} \right] e^{-\frac{\delta}{\rho} x_i} dx,$$

$$I_1 = \int_{x_1}^{x_2} \left[e^{-\frac{\delta}{\rho} x_1} - e^{-\frac{\delta}{\rho} x_i} \right] e^{-\frac{\delta}{\rho} x_i} dx,$$

where $\chi = \frac{\phi_{ul}^{kx} d_m^m}{\eta \rho}$ and $\delta = \frac{\eta d_m}{\phi_{ul}^{kx} d_b^m}$, applying [3.322.1, [26]], we can express Y_2 as:

$$Y_2 = e^{\frac{\delta}{\rho} \sqrt{\phi_{ul} \rho e^\beta}} \left(1 - \Phi \left(\sqrt{\beta + \frac{\sqrt{\chi}}{2\sqrt{\beta}}} \right) \right),$$

where $\beta = \frac{1}{4\delta}$ and $\Phi()$ is applying [3.322.1, [26]]. By solving Y_1 and replacing results of Y_1 and Y_2 in (29) we
obtain
\[
I_i = e^{-\sqrt{\xi}} - e^{-\rho} \sqrt{\pi \beta e^\beta} \left(1 - \Phi \left(\sqrt{\beta + \frac{\sqrt{\xi}}{2\sqrt{\beta}}} \right)^2 \right). \tag{31}
\]

Therefore, \(OP_{S_i}^e\) can be obtained by replacing (31) into (27)
\[
OP_{S_i}^e = 1 - e^{-\sqrt{\xi}} + e^{-\rho} \sqrt{\pi \beta e^\beta} \left(1 - \Phi \left(\sqrt{\beta + \frac{\sqrt{\xi}}{2\sqrt{\beta}}} \right) \right). \tag{32}
\]

Then, we further consider outage performance of \(x_i^e\) as below.

Proposition 2: The outage probability at the BS for \(x_i^e\) in uplink transmission in energy harvesting-enabled NOMA is given by
\[
OP_{U_i}^e = 1 - \left(e^{-\sqrt{\xi}} + e^{-\rho} \sqrt{\pi \beta e^\beta} \right) \left(1 - \Phi \left(\sqrt{\beta + \frac{\sqrt{\xi}}{2\sqrt{\beta}}} \right) \right) \tag{33}
\]

Proof: See the appendix in Section VI.

V. NUMERICAL AND SIMULATION RESULTS

The numerical analysis is implemented to evaluate the performance of our proposed system. Simulated results confirm the exactness of the expression derived. It is worth noting that following curves in figures are predicted so that they match with simulation results in all of the results. The distances between pair of nodes are normalized. In this section, \(m = 3\) is set for the path loss exponent. We set simulations for 10,000 times.

![Graph 1](image1)

Fig. 3. Outage performance at \(U_1\) with varying target rate and \(d_a = 1, d_b = 5, \text{ and } \eta = 0.2\) in Scheme I.

![Graph 2](image2)

Fig. 4. Outage performance of \(U_2\) with varying target rate and \(d_a = 1, d_b = 5, \text{ and } \eta = 0.2\) in Scheme I.

![Graph 3](image3)

Fig. 5. Outage performance of \(U_1\) in Scheme II (\(d_a = 1, d_b = 5, \text{ and } \eta = 0.2\)).

VI. CONCLUSIONS

In this paper, in order to remain operation together with acceptable outage performance of NOMA, energy harvesting policies in it are required to be deployed. Two scenarios are proposed, based on which source the energy is transmitted, i.e., the base station or the power beacon. The exact expressions of outage performance are studied under a linear energy harvesting model. As main result, two schemes are
proposed to solve this challenging wireless power transfer to NOMA users. It is shown that the performance achieved by using NOMA in Scheme I is better than that in Scheme II, although Scheme I requires the power beacon to be designed.

APPENDIX A

Proof of proposition 2. We further examine the outage event at the BS for x_i^* and it can be formulated by

$$OP_{x_i^*} = 1 - \Pr \left(y_{1,i}^* > \phi_{x_i^*}^{\text{UL}}, y_{2,i}^* > \phi_{x_i^*}^{\text{UL}} \right) = 1 - \Pr \left(y_{1,i}^* > \phi_{x_i^*}^{\text{UL}} \right) \Pr \left(y_{2,i}^* > \phi_{x_i^*}^{\text{UL}} \right).$$

(A.1)

Next, I_2 can be expressed as

$$I_2 = \Pr \left(|h_i^*|^2 > \kappa \right),$$

(A.2)

where $\kappa = \frac{\phi_{x_i^*}^{\text{UL}} d_k^{\text{lin}}}{\rho}$. Then, I_2 can be computed by using exponential distribution of $|h_i^*|^2$ as

$$I_2 = e^{-\kappa}.$$

(A.3)

In the end, it can be obtained final result. It completes the proof.

REFERENCES

