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1Abstract—This study analyses the vibration of Squirrel 

Cage Induction Motor (SCIM) with bearing faults using high-

frequency signal (Handheld UWB radar) and Software Phase 

Locked Loop algorithm (SPLL). The contact or non-contact 

methods perform condition monitoring of the SCIM. The 

proposed method is a non-contact technique to perform 

condition monitoring of the SCIM. The contact methods 

execute via vibration, instantaneous frequency, rotor speed and 

flux signals analysis; whereas non-contact methods accomplish 

via acoustic, current and stray flux measurement. The existing 

techniques suffer from the influence of adjoining electrical 

machines; require human expertise to mount sensors and 

analysing the signals. In this paper, a new, non-contact method 

proposed for bearing fault identification in the SCIM. The 

proposed method uses a high-frequency signal projected on the 

motor and the reflected signal captured. The signal obtained is 

analysed with an advanced signal processing algorithm like 

Rational Dilation Wavelet Transform (RDWT) to identify the 

faults in the SCIM. The signal energy at the fault frequency 

level increases from 4.72 % to 5.82 % with the increase in the 

number of the faults. The signal energy variation indicates the 

severity of the faults. From the experimental results, the 

bearing fault of the motor identified in the beginning stage of 

the fault.  

 
 Index Terms—Fault diagnosis; Induction motor; Phase 

Locked Loop algorithm; Radar signal processing; Rational 

dilation wavelet transform (RDWT). 

I. INTRODUCTION 

Bearings are crucial components of the IMs, which play a 

vital role in the operation. IMs experience the various 

internal faults like bearing faults, rotor bar faults, the stator 

winding short circuit faults and external voltage 

fluctuations. Among all these faults, the defects in the 

bearing cause approximately 51 % of motors to fail. Hence, 

the bearing condition monitoring is crucial from industry’s 

point of view [1]–[3]. The bearings in the IMs fail due to 

various factors like contamination, corrosion, misalignment, 

improper installation, no lubrication [4], voltage variation, 
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overloading and unbalance supply voltage conditions.  

The fluctuations in the supply voltage to IMs cause a 

negative sequence current flow in the rotor and the stator. 

The negative sequence current causes more power losses, 

which causes higher temperatures at bearings and other 

parts. The higher temperature makes surface roughness 

known as electrical fluting [5]. The continued operation of 

rough surface or surface pitting in industry causes multi-

point defects in bearings like a defect in the outer race, inner 

race, balls and cage. The multiple faults in bearings are also 

caused by the air gap eccentricity in the motor, which 

further leads to the development of Unbalanced Magnetic 

Pull (UMP). UMP causes the rubbing of the rotor with the 

stator and the vibrations created by multiple faults in the 

motor is challenging to analyse, require more accurate, 

highly sensitive sensors for detection and analysis [6]. The 

parameters of the SCIM like current [7], vibration [8], 

temperature, acoustic emission and flux around the machine 

are monitored to identify the faults in the early stage. The 

Park's and Concordia approach [5], measures stator current, 

based on the circle or elliptic patterns determines the inner 

and outer race bearing fault. However, these methods 

accuracies depend on the quality of the power. The localized 

bearing fault diagnosis with the spectral kurtosis and 

envelope analysis [9], statistical measurement [10] by 

measuring the stator current and stray flux respectively. The 

flux measurement accuracy depends on the sensing coil 

location and distance from the motor. The wireless sensor 

networks are another method to identify the inner and outer 

race defects, which measures vibration, current and acoustic 

emission for fault identification [11]. The technique suffers 

from less accurate data delivery and data loss in the 

industrial environment, due to improper mounting of 

sensors, other machines disturbance and higher in cost due 

to a number of sensors. The various methods in wireless 

sensor network like inductive coupling principle and a tri-

axial accelerometer had employed in [12] to detect single 

point defects in the outer and inner race by using motor 

vibration as a medium. The amplitude modulation [13], the 
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tri-axial integrated circuit with piezoelectric accelerometer 

and Integrated Circuit Piezoelectric (ICP) accelerometer 

[14] are the methods to identify the fault, by measuring 

motor vibration, speed, current [15], and energy loss. 

However, the methods suffer from the complex analysis of 

the data, long time for processing and continuous operation 

of the piezoelectric accelerometers causes overheating of 

sensors, which in turn require a temperature compensation 

circuit, so, soft-computing methods are the alternate solution 

for hardware methods. 

The soft-computing methods have advantages like easy to 

implement and economical compared to hardware methods 

for identifying the bearing fault. The soft-computing 

techniques such as neural network [16], [17], pattern 

recognition, fuzzy logic [18], [19] have been employed to 

determine the bearing fault, which analyses the vibration 

signal of the motor. In general, the soft-computing methods, 

process signals by FFT, STFT and Wavelets. However, soft-

computing methods suffer from computational complexity; 

require large computer memory, more processing time and 

skilled personnel in analysing the signal to identify the fault. 

The primary objective of this paper is to propose a low cost, 

a non-contact and simple method to detect, diagnose the 

defects in the bearings of IM by UWB radar signal analysis 

using an advanced signal processing technique like wavelet 

transforms. 

The rest of the paper is organized as follows: a literature 

survey discussed in Section II. In Section III, bearing faults 

and characteristic frequencies explained. Section IV 

describes the details of wavelet transforms and Section V 

shows the framework of the proposed method. Section VI 

describes the experimental results and finally, Section VII 

concludes our work.  

II. LITERATURE SURVEY 

The bearing faults in IMs identified from acquired current 

and vibration signal, by extracting the pattern of the fault 

signal using soft computing techniques. The current signals 

are analysed with Artificial Neural Networks (ANNs) 

methods to infer the stages of the fault condition in the 

motor [5]. The back-propagation, feed-forward network 

algorithm and Park’s vector algorithm are various 

algorithms for training the ANN. The bearing faults in the 

IMs such as an inner raceway, outer raceway, ball fault 

identify using parks algorithm and frequency signatures of 

the stator current with more accuracy at the early stage of 

fault occurrence. However, the neural network requires the 

same level of fault all the time.  

The vibration signals are also analysed with ANNs to 

identify the bearing fault occurrence in the SCIMs [20]. The 

FFT, STFT and wavelet are various algorithms for 

frequency signature analysis of the acquired signal [21]. The 

different faults in the SCIMs caused for generation of 

multiple harmonics in line current. The harmonic order 

tracking [22], identify various faults in the early stage with 

the harmonics generated in the SCIMs. Whereas 

determining the location of fault creation in the motor is still 

challenging task. So, the condition monitoring of the SCIMs 

needs more precise, accurate fault detection and fault 

location with the efficient non-contact method.  

The non-contact methods make use of stray flux 

measurement, acoustic emission measurement, vibration and 

voltage measurement. The stray flux around the machine is 

measured by a flux probe at different locations of the motor 

like on body and fan end. The flux probe suffers from 

voltage attenuation [10]. The other non-contact method is 

multi-sensor wireless system, which employs different 

sensors on the common wireless platform for measuring 

acoustic signal, vibration and voltage [11]. The multi-sensor 

method suffers from data loss while transmitting from the 

wireless system to base. Therefore, we propose a novel, 

low-cost, non-contact and simple technique for diagnosing 

the bearing fault in SCIMs with handheld UWB radar. The 

acquired signals are analysed with FFT, STFT and wavelets. 

III. BEARING FAULTS AND CHARACTERISTIC FREQUENCIES 

The SCIMs consists of two bearings at two ends of the 

rotor. In some motors, two bearings are the same size, 

whereas in others they are different sizes. The bearings used 

in the SCIMs comes in two versions, i.e., a sealed and a 

shielded version with extension 2RS and ZZ respectively. 

The 6205-ZZ is a 25 mm ball bearing that is used in this 

application. The 6205-ZZ ball bearing consists of an inner 

and outer raceway, with a set of rolling elements running on 

their tracks. The rolling element in a bearing fixed in a cage 

that ensures equal spacing prevents slipping from the 

position and mutual contacts. Figure 1 provides the 

geometry of the bearing NBC 6205ZZ employed in the 

present work and the detailed specifications of the bearing 

are given (Table I). 

 
Fig. 1.  Bearing dimensions indication. 

TABLE I. 6205ZZ BEARING SPECIFICATIONS. 

S.NO PARAMETER VALUE 

1 MATERIAL Chrome steel 

2 
INSIDE&OUTSIDE 

DIAMETER 
25 mm & 52 mm 

3 BEARING WIDTH 15 mm 

4 BALL DIA (Dbb) 7.94 mm 

5 PITCH DIA (Dcb) 39.4 mm 

6 NO OF BALLS (NB) 9 

 

The dynamics of the bearings had described by the 

fundamental motions, which corresponds to a particular 

frequency [23]. These frequencies are denoted as the shaft 

rotational frequency (FSR), the fundamental cage frequency 

(FFC), the ball pass inner raceway frequency (FBPIR), the ball 

pass outer raceway frequency (FBPOR) and the ball rotational 

frequency (FRB). The bearings vibrate with periodical 

movements. So, signal processing techniques such as FFT, 

STFT and wavelets [24], [25] is used to extract the vibration 

features from frequency domain easily. 
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A. Shaft Rotational Frequency (FSR) 

The bearing is part of the rotating motor system and it 

will rotate at the same speed ( SRF ) as the rotor or shaft 

speed. All other frequencies of bearings are functions of the 

shaft rotational frequency.  

B. Fundamental Cage Frequency (FFC) 

The fundamental cage frequency developed by the motion 

of the cage measured as the mean of the linear velocities of 

the inner raceway irV  and the outer raceway orV  is 

described by (1–2) [18], [26] i.e. 
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where crV  is the linear velocities of the ball center, cbD  is 

the bearing cage diameter and radius of the cage  cr

2cbD . The linear velocities irV  and orV  represented 

with their respective rotational frequencies, i.e., inner 

rotational frequency irF  and outer rotational frequency orF

multiplied by their corresponding inner radii

 cos 2i c bbr r D    and outer radii

 cos 2o c bbr r D   . bbD  is the ball diameter and   is 

the contact angle of the bearing. Thus, FCF  can be further 

expressed as (3) [18], [26] 
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C. Ball Pass Outer Raceway Frequency (FBPOR) 

The ball present in the bearing will pass a point at a rate 

on the outer raceway track known as Ball Pass Outer 

Raceway Frequency ( BPORF ). BPORF  is equal to the 

number of bearing balls BN  multiplied by the difference 

between the fundamental cage frequency FCF  and the outer 

rotational frequency orF , given by (4) [18], [26] 
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D. Ball Rotational Frequency (FRB) 

The ball in the bearing rotates at a specific speed about its 

axis, which is known as the ball rotational frequency (FRB). 

This frequency can be calculated from either BPORF , given 

by (5) [18], [26] 
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where br  is the ball radius. 

In a motor, the outer raceway of the bearing gets locked 

by an external casing, so, it can be assumed stationary, while 

the inner raceway is rotating at the speed of the shaft, i.e., 

0orF   and ir SRF F . Therefore, in a motor system, (3)–

(5) can be rewritten as (6 to 8) [18], [26]:  
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The bearings in induction motor with defects will produce 

vibrations with any one of the frequencies among above 

described three frequencies. 

IV. RATIONAL-DILATION WAVELET TRANSFORMS 

The SCIMs develop a vibration of the specific frequency 

for different faults. The fault frequency identified with 

signal analysis algorithms like FFT, STFT and wavelet 

transforms. These algorithms are described below. 

A. FFT 

All the signals are classified as stationary signals and non-

stationary signals. The stationary signals are analysed by 

Fourier analysis. The FFT analysis of any signal  y n  is 

calculating Discrete Fourier Transform (DFT) with reduced 

computational complexity. N  is the number of  x n  

samples. The FFT of the signal is given by (9) [27]  

    1
0 ,j nTN

nY y n e  
  (9) 

where  Y   is DFT of  y n . 

B. STFT 

The FFT analysis is suitable for stationary signals, 

whereas not appropriate to analyse a non-stationary signal. 

The non-stationary signals have transitory characteristics 

such as drifts, abrupt changes, and frequency trends [1]. So, 

the non-stationary signals can be analysed by considering 

the small portions of the signals. The technique of analysing 

small portions of the signal is known as Short Time Fourier 

Transform (STFT). The STFT of an input signal  x t  with 

frequency f  is given by (10) [28] 
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STFT t f x t t t e dt
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where  t t   – window function centered at time t t . 

C. Rational-Dilation Wavelet Transform 

The STFT of the signal provides limited precision and 

that precision is determined by the size of the window. The 

fixed size of the window is the main drawback of the STFT 

[29]. The wavelet transform overcomes the difficulties 

mentioned above. A windowing technique with the variable-

size region is then used to perform the signal analysis. 

Wavelet analysis allows the use of long time intervals for 

more precise low-frequency information and shorter regions 

for high-frequency details [30]. The discrete wavelet 

transform (DWT) consists of sampling the scaling and 

shifted parameters, but not the signal or the transform; this 

leads to high-frequency resolution at low frequencies and 

high-time resolution at higher frequencies. 

A discrete signal  x n  could be decomposed as given in 

(11) [28], where  n  is the scaling function,  n  is the 

mother wavelet,    2
, 2 2
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io

io l n n l    is the scaling 

function at a scale of 2ios   shifted by l ,
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i l n n l    is a mother wavelet at a scale of 

2is   shifted by l , ,io la  is the approximation coefficient at 

a scale of 2ios   and ,i ld  is the detail coefficient at a scale 

of 2ios   
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In this paper, SCIMs bearing condition is monitored by 

analysing the vibration signal, so, a suitable wavelet 

transform needs to be chosen. There is a number of wavelet 

transforms available for vibration signal analysis like cosine 

modulated filter banks, wavelet packets and dyadic wavelet 

[31]. The dyadic wavelet transform is an easily invertible 

‘constant- Q’ transform that is very effective for the sparse 

representation of piecewise smooth signals [32]. However, 

the dyadic WT is less efficient for processing vibration 

measurements. Vibration signals are quasi-periodic over 

short-time intervals and for analysing those signals needs 

better frequency resolution than that provided by the dyadic 

WT. The dyadic WT has a very low Q-factor and poor 

frequency resolution. Other transforms, like the cosine 

modulated filter banks and wavelet packets, are often used 

for vibration signals instead of the dyadic WT. But these 

transforms do not have constant-Q. So, in this paper, a 

wavelet transform having constant-Q is used .i.e. RDWT. 

RDWT can be implemented as critically sampled and 

overcomplete RDWT. The overcomplete RDWT provides 

several advantages compared to the critically sampled 

RDWT, such as minimal-length perfect reconstruction 

filters, shift-invariant and smooth analysis/synthesis 

functions [33].  

V. FRAMEWORK 

The framework of the proposed non-contact method for 

the bearing fault identification in SCIMs is shown in Fig. 2. 

In the proposed method, a high-frequency signal from the 

handheld UWB radar is projected on the motor and the 

reflected signal is captured without any contact with SCIM. 

The acquired signal is fed to SPLL. The signal given to 

SPLL is compared with the feedback signal, from which 

error signal is obtained. The error signal received is 

processed with the various signal processing algorithms and 

the fault is identified. 

 
Fig. 2.  The framework of the proposed system. 

In the proposed method, the main components are SCIM, 

high-frequency signal source (UWB radar) and data 

acquisition system with SPLL algorithm. 

A. Induction Motor and UWB Radar 

The device under test is a 2Hp three-phase SCIM. The 

critical component of the proposed system is UWB radar 

(high-frequency signal source). Radar works on the 

fundamental principle of transmitting electrical pulse signal 

towards the target and receiving the reflected signal. The 

receiver processes the reflected signal for various 

parameters of the target like speed, harmonics and direction 

of motion. UWB radar acts as the high-frequency signal 

source in the proposed system, which is projected onto the 

motor and the signal reflected from the motor is captured. 

The radar system contains three different sub-blocks, i.e., 

transmitter, receiver and antenna system [34]. In the 

proposed technique, an HB series of microwave sensor 

module is used (Fig. 3). The sensor is of X-Band Mono-

static Dielectric Resonator Oscillator (DRO) Doppler 

transceiver front-end module. The radar module works with 

5V DC supply and generates a high-frequency signal 

(10.525 GHz frequency). The module consists of DRO, 

microwave mixer and patch antenna. Furthermore, the patch 

antenna transmits high-frequency signal on to the target via 

a transmitter (TX). The receiver (RX) antenna receive 

reflected signal and fed to the mixer. The mixer mixes the 

transmitted and received signals and generate a signal with a 

frequency equal to the difference of those two.  

 
Fig. 3.  UWB radar module block diagram. 

The proposed method works based on the international 
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patent application. According to the patent application [35], 

“a microwave signal can be amplitude modulated by a 

mechanically oscillating object in the signal path between a 

transmitter and receiver.” Therefore, transmitted microwave 

signal modulated according to the characteristic frequency 

of SCIM vibration. 

The handheld UWB radar emits a high-frequency signal 

 1x t  (sinusoidal signal) with a frequency 1f  and 

amplitude 1M  represented as (12) 

    1 1 1 1cos 2 .x t M f t  (12) 

The SCIM vibrates with a characteristic frequency 2f  

and amplitude 1N . The vibration signal  1y t  is 

represented as (13) 

    1 1 2 2cos 2 .y t N f t  (13) 

The  1x t  is amplitude modulated with  1y t  and the 

resultant signal  1z t  is (14) 

            1 1 1 1 1 11 .z t y t x t x t x t y t         (14) 

Based on mathematical identities [36], [37],  1z t  shown 

as, (15) 
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Therefore, the resultant signal can be written as the sum 

of the three sine waves, i.e., the high-frequency signal 

  1x t  and two sideband sine waves with sum and 

difference of two signal frequencies. Furthermore, the 

acquired UWB radar signal analysed with FFT and 

frequency components obtained. The obtained frequency 

components indicate the fault condition in SCIM.  

B. Data Acquisition System with SPLL 

The other component of the proposed method is a data 

acquisition system with SPLL. The signals captured by 

UWB radar are given to a data acquisition system 

(SIGVIEW software). The acquisition system records the 

signal and the recorded signal is input to the SPLL for 

obtaining the error signal for analysing the faults in the 

SCIM. SPLL is an algorithm, where all the functions of the 

PLL are realized by the program. SPLL is more 

advantageous compared with hardware PLL as SPLL work 

faster, immune to ambient conditions, more accurate and is 

reconfigurable [38]. The SPLL gives the output error signal, 

which is analysed with various signal processing algorithms. 

Algorithm of Software Phase Locked Loop (SPLL) 
1. Set sampling frequency, supply frequency, time of simulation 

2. Provide input reference signal obtained from the faulty motor to 

phase detector.  

3. Provide output of phase detector to the loop filter. 

4. Given output of the filter to Digitally Controlled Oscillator (DCO) 

& calculate sine and cosine using integration process 

5. Feedback the DCO output to the phase detector and obtain error 

signal from phase detector to analyse the fault in IM. 

VI. RESULTS AND DISCUSSION 

The parameters of 3-Phase SCIMs for conducting 

experiments are tabulated (Table II). 

TABLE II. THREE PHASE SCIMS PARAMETERS. 

S. No. PARAMETER RATED VALUE 

1 Power 2HP (1.5 KW) 

2 Current 3.5 A 

3 Synchronous speed 1500 rpm 

4 Speed 1410 rpm 

5 Supply voltage 3-Phase,415 V, 50 Hz 

 

Figure 4(a) and Fig. 4(b) shows the experimental setup. 

The experimental setup consists of 

1. Three-phase Squirrel Cage 2-HP IM with brake drum 

loading setup; 

2. Voltmeter, Ammeter and tachometer for measuring 

voltage, current and speed; 

3. UWB radar for generating and receiving signal; 

4. PC equipped with data acquisition software SIGVIEW 

and SPLL. 

 
(a) 

 
(b) 

Fig.  4.  Experimental setup for bearing fault identification. 

The UWB radar is arranged at a fixed distance from the 

motor and the reflected signal received by the radar is 

recorded using data acquisition software (SIGVIEW) with a 

sampling rate of 10000 Hz (sampling period of 0.1 ms). The 

first 2.5 s of signal information is processed for signal 

analysis. The signal is analysed and plotted on a graph. The 

various faults occur in bearings of the SCIM are identified 

through radar reflected signal with an experimental setup. 

In the experimental setup, the various bearing faults are 

created and the corresponding signals are recorded. The 

bearing faults are made artificially by super drilling the 

hardened material bearing. Figure 5 shows the different 

bearing faults. Based on the parameters of bearing listed in 

the table and considering that the motor is operating at the 

measured shaft speed of 1498 rpm (Fs = 24.96 Hz), the 

characteristic vibration frequencies are calculated from (6)–

(8) as listed below [20] (Table III). 
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TABLE III. CHARACTERISTIC DEFECT FREQUENCY. 

Sl. No. Fault Location Characteristic defect frequency 

1 Normal 24.96 Hz 

2 Outer race 89.18 Hz 

3 Balls 116 Hz 

 
                      (a)                            (b)                                (c) 

Fig. 5.  Rotor bearings in three-phase induction motor with various faults 

(a) normal, (b) outer race fault, (c) outer race and ball fault. 

The error signal from SPLL is analysed with FFT, STFT 

and RDWTs. The outputs of these signal analysis algorithms 

are explained below. 

A. FFT Analysis 

The 3-phase SCIMs operate with 3-phase, 415 V, 50 Hz 

supply and full load current of 3.5 A. 

In the proposed method, the bearing faults in the 3-phase 

SCIM are identified with the non-contact method. The 

SCIM consists of two bearings, one towards load end and 

another at the opposite end of the rotor. In the two bearings 

of the SCIM, one bearing is damaged artificially and tried to 

identify the faults with the proposed method. There are two 

bearings under test, which have one fault (outer race fault) 

and two faults (outer race and ball fault). The faults are 

created by drilling a hole of 3 mm with a special drill. 

Figure 6 shows the power spectra of the SCIM operating 

with multiple fault bearing. The signal is processed with 

proposed method and analysed with FFT. The power spectra 

maximum is 105.7 dB at 50 Hz. 

 
(a) 

 
(b) 

Fig. 6.  Power spectra of error signal with Two Faults. 

B. STFT Analysis 

The power spectra of error signal with FFT analysis 

indicate peak value clearly, whereas the rotor harmonics are 

not able to distinguish. FFT analysis is suitable for external 

electrical fault identification, but internal fault identification 

is challenging “to be published” [39]. The FFT frequency 

resolution is not enough to show rotor harmonics. However, 

the FFT analysis is suitable to identify the electrical faults 

like voltage unbalance, load variations and supply frequency 

variation. So, the error signal is analysed with STFT, which 

is having a better frequency resolution to identify the 

bearing faults. The output of the signal analysis is drawn as 

a graph with frequency, time and the power of the signal on 

three axis of the graph. Figure 7 shows the power spectra of 

the SCIM with STFT analysis. The graph (Fig. 7(b)) is 

showing the rotor asymmetry harmonics at 44.2 Hz and 

55.2 Hz with the more resolution than in FFT analysis. 

C. Wavelet Analysis 

The power spectra of error signal with STFT analysis 

indicates strong harmonics like rotor harmonics able 

identify, but bearing fault harmonics (outer race and ball 

fault harmonics) with minimum power are not observable in 

the STFT analysis (Fig. 7(c)). So, the error signal is 

analysed with wavelet transforms. Figure 8(a) to Fig. 8(c) 

shows the RDWT outputs for various fault conditions of the 

SCIM like normal, single fault (outer race fault) and two 

faults (outer race & ball fault). The plot consists of 

waveforms of 12 levels of WTs along with actual signal 

recorded and the percentage of the signal power at different 

levels is specified. Each level of the subband carries 

information about a particular band frequency as is given 

(Table IV).  

TABLE IV. FREQUENCY BANDS IN EACH LEVEL. 

LEVEL 
FREQUENCY RANGE (Hz) 

FROM TO 

L1 5000 10000 

L2 2500 5000 

L3 1250 2500 

L4 625 1250 

L5 312.5 625 

L6 156.25 312.5 

L7 78.125 156.25 

L8 39.062 78.125 

L9 19.531 39.062 

L10 9.766 19.531 

L11 4.883 9.766 

L12 0 4.883 

 

In the wavelet plot, the sum of the total power is 100 %. 

Percentage of each sub band signal power is measured as the 

ratio of the particular level signal power to the total power. 

The RDWT satisfy the Parseval property, i.e., the 

distribution of the power across the subbands reflects the 

frequency content of the signal [31], [33]. So, the percentage 

power of each subband gives the percentage of frequency 

content in the total signal. The outer race fault and ball fault 

harmonics (89.18 Hz and 116 Hz) presence identify with the 

measuring the power at the level-7. The subband power 

analysed with MATLAB-2017 version and tabulated Table 

V). 

TABLE V. SIGNAL POWER PERCENTAGE FOR DIFFERENT FAULT 

CONDITIONS WITH PROPOSED METHOD ANALYSIS. 

No of Faults/Level Level-7 signal power 

Normal 4.72 % 

Single Fault 4.82 % 

Double Fault 5.82 % 
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The level-7 signal power is increasing with a number of 

faults (4.72 % to 5.82 %). During no-fault condition, the 

signal power is only 4.72 %, with outer race fault alone, the 

signal power increases by 0.1 % (4.82 %) indicates that the 

fault frequency (89.18 Hz) is affecting. When bearing 

damage both in the outer race and ball, the signal power 

increases by 1.1 % (5.82 %) from the normal condition, 

indicates that the fault frequencies (89.18 Hz and 116 Hz), 

which are in the range of level-7 are dominant and affecting 

IM more severely. 

 

 
(a) 

    
                                                        (b)                                                                                                        (c) 

Fig. 7.  Power spectra of the error signal for Two Faults with STFT analysis. 

 
(a) 

 
(b) 
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(c) 

Fig. 8.  Wavelet output under (a) normal condition, (b) single fault, (outer race fault), (c) two fault (outer race & ball fault) condition. 

VII. COMPARISON WITH RELATED WORK 

The below table gives the comparison for various contact 

and non-contact methods with the proposed method, used 

for bearing fault identification in the three-phase SCIM 

regarding signals measured, analysis technique, unique 

components required, signal information required and cost 

of the system. Multi-sensor wireless system [11] needs 

various sensors and sensor network (500 $ and above) and 

suffers from data loss while transmitting. The temperature 

measurement, vibration measurement [12] method require 

special wireless sensor network and specially designed lab 

for obtaining accurate signal information, results in 

increasing the cost (above 1000 $) of the experimental setup 

for fault identification. The stray flux measurement [10] is a 

non-contact method, whose price includes a unique stray 

flux measuring coil arrangement and data acquisition board 

(above 100 $). The stray flux measurement influenced by 

adjoining machines flux and total flux is not possible to 

capture. The cost of contact methods increases due to 

continuous maintenance and replacement of sensors. Even 

though the sensors are low cost (1 $ to 4 $), continuous 

replacement increases the overall cost of the system. The 

other expensive experimental system required is a particular 

signal capturing and storage devices like DSO (above 

100 $). The Kurtosis and Envelope Analysis and rotor speed 

based bearing fault diagnosis methods are costly and also 

not able to distinguish multiple faults in bearing. When 

compared with other techniques, the proposed method is 

more economical for implementation as it does not require 

any costly and advanced data acquisition boards, signal 

storage devices, expensive sensors which need replacing 

regularly and special software for signal analysis. The 

proposed methods able identify the multiple faults in the 

bearing. So, the proposed method is implementable with low 

cost. 

TABLE VI. COMPARISON OF EXISTING METHODS WITH PROPOSED METHOD. 

S. No. 

Type of 

the 

Method 

Technique 
Signals 

Measured 

Signal 

Analysis 

Technique 

Complexity (Special 

Components 

Required) 

Signal 

information 

Required 

Cost Remarks 

1 

Non-
Contact 

Method 

Proposed Method 
(SPLL based 

Technique) 

Vibration 

Signal 
RDWT 

Low(UWB radar, 

SPLL Algorithm) 
2.5 Sec 

Low (50$ 

and above) 

It is not affected by 
surrounding noise 

or temperature 

2 

Means of Statistical 

Processing 
Technique[10] 

Stray Flux FFT 

Medium (Flux Sensor-
M-343F-1204, NI USB 

6212-acquisition 

board) 

50 Sec 

Medium 

(100$ and 
above) 

The sensor coil may 
be influenced by 

adjoining electrical 

machines. 

3 

Multisensor 

Wireless System 
[11] 

Vibration, 

Current and 
Acoustic 

HHT, FFT 

High (two-axis 

accelerometer, Hall-

effect sensor, wireless 
sensor network 

(Imote2)) 

4 Sec 
High (500$ 

and above) 

Wireless system 

suffers from data 

loss while 

transmitting. 

4 

Contact 

Method 

Spectral Kurtosis 

and Envelope 

Analysis [9] 

Stator Current FFT 

Medium (Current 

probes, monoaxial 

accelerometer) 

N/A 

Medium 

(100$ and 

above) 

Kurtosis and 

Envelope Analysis 
can detect only 

outer race fault. 

5 

Motor Current 

Signature Analysis 

(MCSA) [28],[40] 

Current DWT 

Medium (data-

acquisition system (NI 
MY DAQ), the current 

sensor LEM LA55P) 

N/A 

Medium 

(100$ and 

above) 

Require large 
memory to store 

data and affected 

with surrounding 
Noise 

6 
Rotor Speed Based 

Bearing Fault 

Diagnosis[15] 

Vibration, 
Current & 

Speed 

AVB-PCA 

High ((NI)cDAQ-9178 

USB bus chassis, 

NI9411 module, E60H 
NPN type encoder) 

N/A 
High (500$ 

and above) 

Not able to 

distinguish the fault 

from other sources 
of speed oscillation 

7 
Thermal-induced 

Shift[12] 

Temperature & 

Vibration 
FFT 

Medium(tri-axial 

accelerometer, U2J 

Murata capacitor, 
Spectrum analyser) 

More than 60 

Sec 

High 

(1000$ and 

above) 

Require unique 

wireless sensor 

network and lab, 

which is more 

costly 
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The other parameters compared are the signals acquired 

and analysis method for identifying the bearing faults. In the 

proposed method vibration signal alone analysed, whereas, 

in other techniques, more than one signal (vibration, current, 

speed and acoustic signal) is required for fault identification. 

The signal analysis algorithms used in the other methods are 

FFT [9], [12], STFT [41], Hilbert–Huang Transform (HHT) 

[11], DWT [28], [40] and absolute value-based principal 

component analysis (AVB-PCA) [15], which suffer from 

unstable Q-factor, whereas, in the proposed method RDWT 

(constant Q-factor) is utilized for signal analysis. 

The complexity of experimental setup or devices utilized 

in the proposed method is simple as compared with other 

methods. The existing contact methods require a set of 

sensors attaching to the induction motor to collect the data 

and the sensor network connections increase the complexity 

of the system. Whereas the other non-contact methods 

require specialized equipment or the environment, for 

recording signal without any interference from the 

surroundings. 

From all the above comparison, the proposed method is 

preferable as it is low cost and low complexity of 

experimental setup. The proposed method also had other 

advantages like tolerant to temperature change, humidity, 

and immune to the acoustic emission of other machines and 

not affected due to overheating of the motors during the 

fault condition. 

VIII. CONCLUSIONS 

In this paper, UWB radar-based non-contact, low-cost 

method proposed and implemented successfully to identify 

the various bearing faults. The signals obtained from UWB 

radar are analysed with SPLL algorithm and RDWTs. The 

faulty signal of first 2.5 s is analysed. By comparing the 

signal power at fault frequency levels, the faults in the 

bearing are identified. The signal power varies from 4.72 % 

to 5.82 % at level-7 of wavelet output, as the motor 

condition varies from no-fault condition to two bearing 

faults. It indicates with the increase of the number of faults, 

the fault frequency harmonic strength increasing. So, by 

observing the harmonics strength, fault identified. By 

performing many experiments, it is verified that the 

proposed non-contact method identifies bearing faults in the 

early stage and cost-effective. 
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