
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

1Abstract— In applications as in wireless communication,
computer graphics and digital signal processing, a massive of
complex matrix operations is often performed. Reciprocal is
computed in large quantities in these matrix operations. To
obtain high performance, efficient algorithm and hardware
architecture are important in terms of low cost, low
computation time and high precision. Second order first
sub-function and squaring shrunk method have been proposed
to build efficient hardware architecture for reciprocal using
field programmable gate array. Second order first sub-function
in harmonized parabolic synthesis is presented to improve the
approximating precision and decrease the memory usage at the
cost of additional multipliers. To further reduce the complexity,
squaring shrunk method is proposed to decrease the expensive
cost of multipliers. The combination of these techniques yields
good performance trade-off. Precision simulation and hardware
implementation result has shown that hardware reciprocal of
high precision, low memory and low multiplier usage has been
obtained compared to traditional first order first sub-function
harmonized parabolic synthesis method.

Index Terms—Digital integrated circuits; Parallel
architectures; High performance computing; Field
programmable gate arrays.

I. INTRODUCTION

Arithmetic element functions are playing very important
roles in wireless communication, computer graphics and
digital signal processing, reciprocal is one of these functions
which are frequently computed in matrix operations [1].
Because of the characteristic of high throughput and low
latency, hardware implementation has become a main
approach in computing acceleration. To approximate
reciprocal, a lot of algorithms have been developed so far.
Look up table [2], [3], Newton-Rapshon (NR) method [4], [5],
Coordinate Rotation Digital Computer (CORDIC) [6], series
expansion [7], and et al. are of these algorithms developed to
compute reciprocal. The key problem stated among these
algorithms is how to find the best trade-off among precision,
convergence speed, throughput, latency and cost. Look up
table is easy to implement, but the memory size will be huge
when a high precision is required. Newton-Raphson method
is a multiplicative method, it has the property of quadratic
convergence, but it consumes additional multipliers.
CORDIC is a subtractive technique, which is hardware

Manuscript received 19 November, 2017; accepted 8 March, 2018.

friendly, but it occupies a long latency especially at a high
precision. Series expansion is also multiplicative based,
which is a polynomial approximation method. It has the
advantages of fast convergence, but the mass multipliers used
in hardware are expensive.

In order to design efficient hardware architecture for
reciprocal, parabolic synthesis method has been presented [8].
It uses the product of series of sub-functions to approximate
the original reciprocal function, and it indicates performance
improvement over CORDIC and Newton-Raphson method
[9]. Parabolic synthesis method has shown a wide application
in arbitrary function, e.g., sine and cosine function [10], [11],
logarithmic and exponential function [12], and roots, inverse
and inverse roots function [13]. To further release the
hardware burden and improve the computing precision of
reciprocal, harmonized parabolic synthesis (HPS) [14] and
non-linear interpolation [15] have been proposed recently.
For example, a simple first order first sub-function with
non-linear interpolation second order second sub-function in
harmonized parabolic synthesis for reciprocal has been
analysed in [14] and [16], it shows performance improvement
over Newton-Raphson method.

To construct a hardware efficient implementation of
reciprocal with high precision and low memory and
multiplier usage, second order first sub-function and squaring
shrunk method have been proposed in this paper. The
proposed method inherits the harmonized parabolic synthesis
method with non-linear interpolation in second sub-function
as shown in [14] and [16], and constructs second order first
sub-function to obtain a high precision. The proposed second
order first sub-function reduces the memory usage by
employing the symmetric property of the first help function.
To overcome the additional consumed expensive multipliers
in second order first sub-function, squaring shrunk method is
employed in both the first and the second sub-function. It
reduces the hardware complexity by decreasing the number
of used multipliers as well as shrinking the multipliers to
squares. The proposed harmonized parabolic synthesis with
second order first sub-function and non-linear interpolation
in second sub-function combined with squaring shrunk
method has obtained performance improvement for hardware
architecture of reciprocal in terms of precision and
complexity (memory bits and multipliers). It shows a
competitive solution for reciprocal in application of field

Hardware Efficient Reciprocal Using Second
Order Harmonized Parabolic Synthesis and

Squaring Shrunk Method
Jun Luo, Hongwei Luo, Yue Zhi, Xiaoqiang Wang, Hongfeng Lv, Ming Dang

China Electronic Product Reliability and Environmental Testing Research Institute,
No. 110, Dongguanzhuang Road, Guangzhou, Guangdong, China

kyea168@126.com

http://dx.doi.org/10.5755/j01.eie.24.2.20635

42

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

programmable gate array (FPGA) and acceleration of
complex algorithms.

II. RECIPROCAL APPROXIMATION METHOD

A. Newton-Raphson Method
Newton-Raphson method has a long history [4], it is

proposed to solve the non-linear problem by using of linear
equations. NR method for computing reciprocal (1 /z v)
can be expressed by (1), where t represents the number of
iterations

2
1 2 .t t tz z v z    (1)

In order to obtain a fast convergence, look-up table (LUT)
and NR method are combined [17]. LUT is used to acquire a
relatively precise initial value, and NR method is employed
to get a high precision of reciprocal approximating. Let the
size of the LUT is 2h d bits, the binary representation of
the input (1 2)v  and output (0.5 1)z  can be
expressed by (2) and (3), respectively. As a result, the table
entry of reciprocal can by denoted by (4), where

0,1,2,..., 2 1hii   , and ()LUT ii is the pre-computed initial
value to be stored by LUT, and ()addr ii is the access address

of the LUT, and 1d   represents keeping 1d  bits when

fixing to zero:

: 1. ... ,
hbits

v bbb bbb (2)

: 0.1 ... ,
dbits

z bbb bbb (3)

1

1

1 1() () 2 .
21 () 2 2

d
h h

d

LUT ii
addr ii


 



 
   

    
(4)

The hardware architecture of NR method is illustrated in
Fig. 1, it uses table size of 102 10 bits, and consumes two
additions and two multipliers. The input data binary is
composed of 1 bit of integer and 15 bits of fraction.

LUT 100 2 1ii  

Fig. 1. Hardware architecture of NR method with single iteration and initial
value approximation based on LUT.

B. Harmonized Parabolic Synthesis Method
The normally form of reciprocal computation can be

shown in (5), it is the mantissa of the floating-point number
[14]. In the harmonized parabolic synthesis method, the input
and output variable should be normalized to the range of
[0, 1]. Thus, a pre-processing step is needed, as shown in (6),
which normalizes the input variable ()x . As to normalizes

the output variable ()y , the target computing function can
be expressed in (7). Finally, the original reciprocal function
(5) can be computed through (8), which is an after-processing
step. As the pre- and after-processing step is easy to be
implemented in hardware by addition and shifting, the target
function (7) is mainly focused, computed and analysed in this
paper

1 ,z
v
 (5)

where 1 2,v  0.5 1z  .

1,x v  (6)
2 1.

1
y

x
 


(7)

where 0 1, 0 1.x y   

1 (1).
2

z y  (8)

Parabolic synthesis is a newly developed method in
approximating unary functions, which is first presented by
Erik in [8]. It uses the product of a series of second order
sub-functions, defined as 1(),s x 2 (),s x … , ()s x to

approximate the original function, defined as (),orgf x
shown in (9)

1 2() () () ... (),orgf x s x s x s x    (9)

where 1 1, 1 1.x f    In parabolic synthesis, the number
of sub-functions affects the approximating accuracy. To
construct hardware friendly architecture, harmonized
parabolic synthesis (HPS) method has been developed [18],
which uses two sub-functions, as defined in (10). HPS
simplifies the approximating process, which leads to
hardware complexity reduction. To avoid precision loss, it
often combines with non-linear interpolation method, which
will be introduced in section C

1 2() () (),orgf x s x s x  (10)

where 1 1, 1 1.x f    In parabolic synthesis, the first
help function, 1()f x , is defined as the quotient of the original
function and the first sub-function, as shown in (11). The first
help function is used in HPS to estimate the second
sub-function

1 2
1

()
() () ... ().

()
orgf x

f x s x s x
s x     (11)

C.First Order First Sub-Function Based Harmonized
Parabolic Synthesis Method (FOFS-HPS)

In the HPS method, in order to implement reciprocal with
high accuracy and low complexity, constructing sufficient
sub-functions has become the key. To simplify the hardware
implementation, simple first order first sub-function has been

43

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

presented in [14] and [16] for approximating reciprocal.
However, it has the drawback of low convergence and low
accuracy. To overcome this issue, non-linear interpolation
has been utilized in the second sub-function in HPS, which
can compensate the precision loss. The first order first
sub-function based HPS method (FOFS-HPS) is shown in
(12), where i represents the thi interval (total number of
intervals is 2nI ) divided in the first help function, and wx
is defined in (13) which can be implemented by shifting in
hardware:

1
2

2 2, 2, 2,

() 1 ,

() ,i i w i w

s x x

s x l j x c x

 


    
(12)

(2),n
wx fract x  (13)

where 2,il , 2,ij and 2,ic are constant coefficients, and they
are defined by (14), (15) and (16), respectively. ,start ix and

,end ix denotes the starting and ending point of the thi

interval, separately. 2,ik is the slope of the thi interval, as
shown in (17). The employment of non-linear interpolation
can approximate the second sub-function more precisely
through second order multiple piecewise approximation:

2, 1 ,(),i start il f x (14)

2, 2, 2, ,i i ij k c  (15)

, ,
2, 1 2, 2,4 ((0.5),

2
start i end i

i i i
x x

c f l k


     (16)

2, 1 , 1 ,() ().i start i end ik f x f x  (17)

The hardware architecture of FOFS-HPS method is
illustrated in Fig. 2, in which 16 intervals (4)n  is used as
an example. Input and output variables are 15 bits and 16 bits,
respectively. It costs three multipliers, one square and three
additions. Among which, only an addition is consumed in the
first sub-function, leading to a low complexity
implementation.

2,il

2,ij

2,ic 1 i I 

1 i I 

1 i I 

Fig. 2. Hardware architecture of first order first sub-function with
harmonized parabolic synthesis (FOFS-HPS).

D.Proposed Method Using Second Order First Sub-Function
and Squaring Shrunk in Harmonized Parabolic Synthesis

The limitation of traditional FOFS-HPS method is that the
low accuracy in the first sub-function may result in more
intervals in the second sub-function so as to obtain a
relatively high precision. To overcome this issue, HPS with
second order first sub-function (SOFS-HPS) has been
proposed in this paper. As shown in (18), a second order
approximation in the first sub-function has been constructed,
leading to a precise approximation of 1()s x . In (18), i

represents the thi interval divided in the first help function,
and ,wx 2, ,il 2,ij and 2,ic are the same as in (14), (15),
(16) and (17), respectively:

1

2
2 2, 2, 2,

1() 1 (3),
2

() .i i w i w

s x x x

s x l j x c x

    

     

(18)

Because of the using of SOFS, the first help function of
HPS can exploit the symmetric property which can be
utilized to save the memory bits, as illustrated in Fig. 3. It can
be found that the first help function using SOFS has the
property of symmetric, which can lead to nearly half of
memory bits saving in hardware compared to the FOFS
method.

Fig. 3. The first help function using conventional first order first
sub-function (FOFS) and proposed second order first sub-function (SOFS).

Hardware architecture of proposed SOFS-HPS is shown in
Fig. 4, where 4n  and the input and output width is the
same as in Fig. 2. It can be seen from (17) and (18) that the
main difference of approximating reciprocal relies on the first
sub-function. High accuracy is obtained by using of second
order approximation. Hardware architectures (from Fig. 2
and Fig. 4) indicate that the proposed SOFS-HPS method can
reduce nearly half of the memory bits at the cost of an
additional multiplier and addition.

To further release the hardware complexity burden of the
proposed SOFS-HPS method, squaring shrunk method has
been employed. The fundamental of the proposed HPS with
squaring shrunk method relies on the fact that squarer has
lower complexity than multiplier. The complexity analysis is
based on the following assumption and hypothesis.

44

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

sqr

3 1

>>1

2,il

2,ij

2,ic 1
2
Ii 

1 1
2
Ii  

1 1
2
Ii  

fractional

s1

s2

15

17

17

17 16
15
15

4

14

7

4

9 14

14
14

1

11

6

6

14

16

Fig. 4. Hardware architecture of proposed second order first sub-function
with harmonized parabolic synthesis (SOFS-HPS).

Assumption 1

Define the following macros (multiplier   ,mulM squarer

 sqrM and adder  addM) used in approximating

reciprocal, and these macros have the properties in (19) and
(20):

,mul sqr addT T T  (19)

,mul sqr addC C C  (20)

In the assumption, T represents the latency of the macro,
and C denotes the complexity of the macro. Obviously, the
multiplier is the most complexity and slowest macro among
three.

Hypothesis 1
To evaluate the target second polynomial function (),x

where 2 ,a 1,a 0a are constant coefficients

2
2 1 0() .x a x a x a    (21)

It is advantage (considering complexity and latency) to use
the equivalent squaring function, where p , m and k are
constant coefficients

2() () .x p x m k    (22)

The squaring function in (22) needs one addition, one
squarer followed by another multiplication and addition.
However, the target second polynomial function in (21)
requires one squarer, two multipliers and two adders. The
complexity and latency comparison is shown in Table I. It
can be seen that the advantage of the function in (22) is
obvious in terms of hardware cost where two multipliers are
shrunk to a squarer while the latency is the same as in (21).

The proposed SOFS-HPS using squaring shrunk method in
approximating reciprocal is shown in (23), where 2, ,ip 2,im
and 2,ik are defined by (24). It can be seen that two adders
and one squarer are needed in 1()s x and the coefficients
symmetric property can be inherited in the second

sub-function 2 () :s x

2
1

2
2 2, 2, 2,

1 3 1() () ,
2 2 8

() () ,i w i i

s x x

s x p x m k

   

   

(23)

2, 2,

2,
2,

2,
2
2,

2, 2,
2,

,

,
2

.
4

i i

i
i

i

i
i i

i

p c

j
m

c

j
k l

c



  

  


  


(24)

TABLE I. COMPLEXITY AND LATENCY COMPARISON.
Category Function in (21) Function in (22)
Latency 2mul sqr addT T T  2mul sqr addT T T 

Complexity

Number of
multipliers 2 1

Number of
squares 1 1

Number of
adders 2 2

As multipliers are shrunk to squares, the hardware
complexity of the proposed SOFS-HPS method is reduced a
lot. Number of resources usage is compared in Table II.
Compared to FOFS-HPS and proposed SOFS-HPS method,
the proposed SOFS-HPS with squaring shrunk method
consumes the least multipliers at the cost of one additional
squarer without latency and precision loss. It also saves the
memory bits comparing to FOFS-HPS method.

TABLE II. COMPLEXITY COMPARISON OF DIFFERENT METHODS.

Complexity FOFS-HPS Proposed
SOFS-HPS

Proposed
SOFS-HPS with
squaring shrunk

Number of
multipliers 3 4 1

Number of squares 1 1 2
Number of adders 3 5 3

Number of
coefficients being
stored (memory)

3I 3 2
2

I  2 1I 

The hardware architecture of the proposed SOFS-HPS
with squaring shrunk method is shown in Fig. 5, where 4n 
is illustrated. The proposed method has the same
approximating accuracy as SOFS-HPS, which devotes a high
precision. By utilizing second order first sub-function,
non-linear interpolation in the second sub-function, and
squaring shrunk method, hardware implementation of the
proposed SOFS-HPS with squaring shrunk method for
reciprocal yields good trade-off between precision and
complexity.

The proposed SOFS-HPS with squaring shrunk method
has advantages in considering the precision and complexity
of implementing reciprocal in hardware. On one side, the
proposed method improves the approximating precision by
using of second order first sub-function at the cost of
additional resources. It reduces the memory bits usage as well
by exploiting the symmetric property. On the other side,
squaring shrunk method is proposed in this paper to reduce

45

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

the multiplier consumption. Thus, a good trade-off between
approximating precision and hardware complexity has been
obtained which leads to hardware efficient reciprocal
implementation.

2,ip

2,im

2,ik 1
2
Ii 

1
2
Ii 

1 i I 

Fig. 5. Hardware architecture of the proposed SOFS-HPS with squaring
shrunk method.

III. ANALYSIS, RESULT AND COMPARISON

A. Precision Analysis
To evaluate the precision of different approximating

method, error  err and mean error  _err mean are used as

the precision metric as shown in (25) and (26), where ,r orgz

and ,r estz are defined as the r th accurate and approximate
reciprocal result, respectively. Number R denotes the total
number of computed points within the input range
 (1, 2) ,v 100R  is chosen to analyse the error level in
this paper:

, , ,r est r orgerr z z  (25)

 , ,
1

1_ .
R

r est r org
r

err mean z z
R 
  (26)

Figure 6 illustrates the error of LUT based NR method,

FOFS-HPS method and the proposed SOFS-HPS with
squaring shrunk method. The non-linear interpolation
intervals are 16 (n = 4). To be clarified, the proposed
SOFS-HPS with squaring shrunk method has the same error
distribution as SOFS-HPS method. Because they are using
the same approximating equations in software even though
their hardware architectures are different. It can be seen that
the proposed method has a relatively higher precision than
FOFS-HPS method, and it shows comparable precision as
NR method with single iteration and table size of 102 10
bits. It is also shown that NR method with two iterations and
table size of 72 7 bits has the highest precision among
them.

Figure 7 displays the average error of different
approximating methods. It can be found that the proposed
method yields an average precision promotion by 98 %
compared to FOFS-HPS method considering different
interpolation intervals. More intervals will lead to lower
average error. The proposed SOFS-HPS with 64 non-linear
interpolation intervals in the second sub-function method can
reach an average error magnitude of 10-8. It can also be seen
that NR method has a faster convergence with the increasing
of iteration. Nevertheless, HPS method has a lower
convergence with the increasing of intervals.

Fig. 6. Error of the proposed, FOFS-HPS and NR method in the input
variable range (1, 2) when intervals are 16 (4)n  .

Fig. 7. Average Error of the proposed and FOFS-HPS method with different intervals, and NR method with different iteration and table size.

46

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

It should be pointed out that the error analysis in Fig. 6 and
Fig. 7 is based on software simulation result. In hardware
architecture, there will be precision loss considering the size
of the memory and the width of the input, output and internal
signal. This will cause additional truncated error which is
often related to specific application.

B. Hardware Precision Analysis Based on Table Size
In hardware architecture, the truncated error caused by the

truncation of different coefficients (2, ,il 2, ,ij 2, ,ic 2, ,ip

2,im and 2,ik) can influence the precision of hardware.
Let the value ,Hl ,Hj ,Hc ,Hp Hm and Hk denotes

the implemented hardware value (determined by the width of
table size) of 2, ,il 2, ,ij 2, ,ic 2, ,ip 2,im and 2, ,ik
respectively. Let the value ,l ,j ,c ,p m and k
denotes the truncated error caused by the limited table width
of 2, ,il 2, ,ij 2, ,ic 2, ,ip 2,im and 2, ,ik respectively. Then,
the following function is met:

2,

2,

2,

2,

2,

2,

,

,

,

,

,

.

i H

i H

i H

i H

i H

i H

l l l

j j j

c c c

p p p

m m m

k k k













 


 
  
  
  
  

(27)

In the FOFS-HPS and proposed SOFS-HPS method, the
second sub-function can be expressed as

2
2 2, 2, 2,

2 2

()

.

i i w i w

H H w H w w w
truncated error

s x l j x c x

l j x c x l j x c x  

   

      (28)

It can be seen from (28) that increasing the size of the table
(enlarge H will decrease , 2, 2, 2,{ , , }i i il j c ) can
directly decrease the truncated error.

In the proposed SOFS-HPS with squaring shrunk method,
the second sub-function can be expressed as

2
2 2, 2, 2,

2

2 2

2

2

2

2

() ()

()()

() 2 ()

() 2 ()

()

2 () () .

i w i i

H w H H

H w H H w H H

w H w H

H

H w H H

H w H w H
truncated error

s x p x m k

p p x m m k k

p x m p x m m p m

p x m p x m m

p m k k

p x m k

p x m m p x m k

  

 

  

  

  

   

      

     

    

   

   

     (29)

High order of truncated error has been omitted in (29),
where only first order of error has been concerned to simplify
the analysis. It can be found in (29) that the table size of Hk
has a linear proportion to decrease the truncated error while

k has the minimum influence on the precision. The other
two variables have a conversed relationship on the truncated
error, where p has a more obvious influence on the
precision than m . It can be seen that the proposed method in
(29) can effectively reduce the multipliers in hardware, but
more memory bits will be consumed to store the more
accurate coefficients so as to obtain the same precision as in
(28).

Average error based on different table size of the proposed
hardware architecture has been shown in Fig. 8, where there
are 16 intervals and the table width of coefficient 2,im is
11 bits. It can be seen that the table width of 2,ip plays more
important role in affecting the average error than table width
of 2, .ik It is consistent with the analysis of the truncated
error in (29).

Fig. 8. Average Error of the proposed (SOFS-HPS with squaring shrunk
method) hardware architecture (4)n  with different table width of

coefficient 2,ip and 2,ik (table width of 2,im = 11 bits).

C.Implementation Result of the Proposed SOFS-HPS
Method

HPS with 16, 32 and 64 intervals on the second
sub-function is implemented. FOFS-HPS and SOFS-HPS
method are compared using FPGA. The implemented
FOFS-HPS architecture is the same as in [16]. The target
device is Cyclone V 5CSEMA5F31C6, and the verification
platform is DE1-SoC. Quartus Prime 16.0 and ModelSim
6.2b is chosen as the synthesis and simulation tool. The width
of input is 15 bits and the output is 16 bits, implementation of
multiplier uses intellectual property (IP) provided by
Quartus.

Implementation results are shown in Table III. All
implementations are using full pipelined structures, which
lead to computed data refreshed every clock (the value of
throughput equals maximum speed). It can be seen that the
proposed method reduces the memory bits by 53 %, and
improves the precision by 32 % on the average. The
improved precision and memory bit has a direct proportion to
the intervals. Although extra adaptive logic modules (ALMs)
are consumed in the proposed architecture because of the
additional usage of addition and multiplexer, it can be found
that the proposed SOFS-HPS method is more effective when
more intervals are used. Above all, the proposed SOFS-HPS
method is a hardware-efficient architecture by taking
advantage of symmetric property in the first help function. It
brings performance improvement in terms of precision and

47

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

memory bits at the cost of two adders and one multiplier over
FOFS-HPS method.

TABLE III. IMPLEMENTATION COMPARISON OF DIFFERENT HPS
METHOD.

Intervals Method ALMs
Mem.
(bits)

DSP
Freq.

(MHz)

Mean
Error
× 10-6

n = 4

FOFS-HPS 90 576 3 285.71 8.489

Proposed
SOFS-HPS 120 252 4 284.01 4.601

n = 5

FOFS-HPS 95 960 2 267.02 8.123

Proposed
SOFS-HPS 126 442 3 290.95 5.326

n = 6

FOFS-HPS 52 1728 3 290.28 8.650

Proposed
SOFS-HPS 114 825 3 288.68 7.146

D.Implementation Result of the Proposed SOFS-HPS with
Squaring Shrunk Method

In order to validate the hardware efficiency of the proposed
SOFS-HPS with squaring shrunk method, implementation of
NR method with single iteration and table size of 72 7 bits
(M1), NR method with single iteration and table size of

102 10 bits (M2), traditional FOFS-HPS method (M3) [14],
proposed SOFS-HPS method (M4) and SOFS-HPS with
squaring shrunk method (M5) based on 16 intervals  4n 
have been implemented and compared using FPGA. The
verification platform and software tools are the same as in
section C. Stratix IV EP4SGX230FF35C4 FPGA is chosen as
a comparison target device as well, where adaptive look-up
table (ALUT) is the basic element of resources. The
implemented hardware architecture is shown in Fig. 1, Fig. 2,
Fig. 4 and Fig. 5, respectively. Full pipelined structures are
implemented either.

TABLE IV. IMPLEMENTATION RESULT OF DIFFERENT
APPROXIMATING METHODS.

Method FPGA
ALMs/
ALUTs

Mem.
(bits)

DSP
Freq.

(MHz)

Mean
Error

× 10-5

M1
Cyclone V 58 896 1 271.96

1.01
Stratix IV 59 896 2 284.82

M2
Cyclone V 76 10240 1 269.98

0.39
Stratix IV 96 10240 2 292.91

M3
Cyclone V 88 464 3 282.73

1.33
Stratix IV 176 464 5 311.43

M4
Cyclone V 128 189 3 278.86

1.32
Stratix IV 236 189 6 298.69

M5
Cyclone V 207 216 2 277.09

1.24
Stratix IV 395 216 4 310.37

Implementation result of different approximating method

in computing 1/z v is shown in Table IV, where 16
intervals are considered. It can be seen that the proposed
SOFS-HPS with squaring shrunk method consumes the least
number of DSP blocks and moderate memory bits (Mem.) at
the cost of extra resources compared to FOFS-HPS and
SOFS-HPS method. The extra ALMs/ALUTs which are
considered less expensive than DSP is resulted from the
squaring shrunk approach. Although NR method reaches a
low complexity in terms of logic element and DSP blocks, it
is due to the mass usage of memory bits. Nevertheless, the
proposed SOFS-HPS with squaring shrunk method can lead
to relatively low memory consumption.

Error of the implemented hardware for different method
has been shown in Fig. 9, where the standard deviation of M1,
M2, M3, M4 and M5 is 1.07× 10-5, 2.82× 10-6, 1.22× 10-5,
1.33 × 10-5 and 6.58 × 10-6, respectively. It can be seen
from Table IV and Fig. 9 that HPS method has outperformed
NR method in terms of speed and memory usage at the cost of
extra logic elements and DSP blocks. It also shows that the
proposed M5 method has the most robust error distribution
among them.

Fig. 9. Hardware error of different method when input variable range is
(1, 2).

From mathematical analysis, precision simulation and
hardware implementation, it can be found that the proposed
SOFS-HPS with squaring shrunk method devotes a
hardware-efficient architecture by exploiting second order
first sub-function, symmetric property and squaring shrunk
technology. It obtains a more robust error distribution
compared to existing FOFS-HPS. It also eliminates the
expensive multipliers without precision loss. Although more
logic elements are consumed to obtain the same precision as
FOFS-HPS, it can be inferred that (from Fig. 8) the influence
of table width for different methods will be negligible when
the accuracy is improved. The proposed method can be easily
implemented in low cost FPGAs for acceleration purpose or
be integrated into complex circuit design where memory and
multiplier is difficult or expensive to implement.

IV. CONCLUSIONS

Second order first sub-function of harmonized parabolic
synthesis with squaring shrunk method has been proposed in
this paper to approximate reciprocal. The use of high order
first sub-function can benefit the accuracy of reciprocal, and
reduce the memory usage by exploiting symmetric
coefficients. Squaring shrunk method can be utilized to

48

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 2, 2018

release the burden of multipliers. These techniques have been
combined to yield an efficient hardware reciprocal, which has
been shown performance improvement over traditional
harmonized parabolic synthesis in terms of precision,
memory and multiplier. Mathematical derivation, simulation
and hardware implementation have been presented to
demonstrate the efficiency of the proposed method, which
shows a promising solution suitable for hardware
acceleration and FPGA design for wireless communication,
matrix inversion, image processing, and et al.

REFERENCES

[1] J. Luo, Q. Huang, S. Chang, X. Song, Y. Shang, “High throughput
Cholesky decomposition based on FPGA”, in Proc. 6th Int. Congr.
Image Signal Process., Hangzhou, 2013, pp. 1649–1653. DOI:
10.1109/CISP.2013.6743941.

[2] D. S. Debjit, D. W. Matula, “Faithful bipartite ROM reciprocal tables”,
in Proc. 12th Symp. Comput. Arith., Bath, 1995, pp. 17–28. DOI:
10.1109/ARITH.1995.465381.

[3] D. Das Sarma, D. W. Matula, “Faithful interpolation in reciprocal
tables”, in Proc. 13th Symp. Comput. Arith., Asilomar, 1997, pp. 82–91.
DOI: 10.1109/ARITH.1997.614882.

[4] T. J. Ypma, “Historical development of the Newton-Raphson method”,
SIAM Rev., vol. 37, no. 4, pp. 531–551, 1995. DOI: 10.1137/1037125.

[5] J. Luo, Q. Huang, H. Luo, Y. Zhi, X. Wang, “Hardware
implementation of single iterated multiplicative inverse square root”,
Elektronika ir Elektrotechnika, vol. 23, no. 4, pp. 18–23, 2017. DOI:
10.5755/j01.eie.23.4.18717.

[6] D. Wang, P. Ren, L. Liu, “A high-throughput fixed-point complex
divider for FPGAs”, IEICE Electron. Express, vol. 10, no. 4, pp. 1–8,
2013. DOI: 10.1587/elex.10.20120879.

[7] M. D. Ercegovac, T. Lang, J. Muller, A. Tisserand, “Reciprocation,
square root, inverse square root, and some elementary functions using

small multipliers”, IEEE Trans. Comput., vol. 49, no. 7, pp. 628–637,
2000. DOI: 10.1109/12.863031.

[8] E. Hertz, P. Nilsson, “A methodology for parabolic synthesis of unary
functions for hardware implementation”, in Proc. 2nd Int. Conf. on
Signals, Circuits & Systems, Tunisia, 2008, pp. 30–35. DOI:
10.1109/ICSCS.2008.4746866.

[9] E. Hertz, P. Nilsson, A methodology for parabolic synthesis. In-Tech,
Vienna, 2010.

[10] E. Hertz, P. Nilsson, “Parabolic synthesis methodology implemented
on the sine function”, in Int. Symp. on Circuits & Systems, Taipei, 2009,
pp. 253–256. DOI: 10.1109/ISCAS.2009. 5117733.

[11] A. M. Hashmi, “Parabolic synthesis and non-linear interpolation”, M.S.
thesis, Dept. Elect. Info. Tech., Lund Univ., Lund, Sweden, 2015.

[12] P. Pouyan, E. Hertz, P. Nilsson, “A VLSI implementation of
logarithmic and exponential functions using a novel parabolic
synthesis methodology compared to the CORDIC algorithm”, in Euro.
Conf. On Circuit Theory and Design, Linkoping, 2011, pp. 709–712.
DOI: 10.1109/ECCTD.2011.6043642.

[13] E. Hertz, “Methodologies for approximation of unary functions and
their implemention in hardware”, Ph.D, thesis, Halmstad Univ.,
Halmstad, Sweden, 2016.

[14] S. Savas, E. Hertz, T. Nordstrom, Z. Ul-Abdin, “Efficient
single-precision floating-point division using harmonized parabolic
synthesis”, IEEE Comput. Soc. Annu. Symp. on VLSI, Bochum, 2017,
pp. 110–115. DOI: 10.1109/ISVLSI. 2017.28.

[15] E. Hertz, B. Svensson, P. Nilsson, “Combining the parabolic synthesis
methodology with second-degree interpolation”, Microprocessors and
Microsystems, vol. 42, pp. 142–155, 2016. DOI:
10.1016/j.micpro.2016.01.015.

[16] J. Chen, J. Shi, “Hardware implementation of number inversion
function”, M.S. thesis, Dept. Elect. Info. Tech., Lund Univ., Lund,
Sweden, 2016.

[17] J. Luo, Q. Huang, S. Chang, H. Wang, “Hardware efficient architecture
for compressed imaging”, IEIEC Electron. Express, vol. 11, no. 14,
pp. 1–12, 2014. DOI: 10.1587/elex.11. 20140562.

[18] N. Thuning, T. Barring, “Hardware architectures for the inverse square
root and the inverse functions using harmonized parabolic synthesis”,
M.S. thesis, Dept. Elect. Info. Tech., Lund Univ., Lund, Sweden, 2016.

49

