
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 3, 2013

Abstract—Unified Modelling Language allows modelling

different aspects of information system through the various

diagrams it supports. Expression of an information system

through class, state, and other models is related to the problem

of checking consistency among different aspect Unified

Modelling Language models. Consistency means that two or

more overlapping elements of different aspect models match

each other. Approaches of checking Unified Modelling

Language models are based on rules. Most of consistency rules

are ambiguous, do not conform OMG Unified Modelling

Language metamodel and sometimes are meaningless. In order

to improve consistency of different aspect models, the approach

of checking consistency is proposed, paying a special attention

on requirements of consistency rules. Example of consistency

rule and experiments are presented.

Index Terms—Consistency, modelling, rules, UML.

I. INTRODUCTION

UML (Unified Modelling Language) is a general-purpose

modelling language that can be used with all major object

and component methods. It was chosen for detail analysis

because:

1) UML is likely to be the most popular modelling

language;

2) It is considered as the standard for the object-oriented

modelling [1];

3) There are many modelling tools supporting UML [2].

UML allows modelling different aspects of information

system through the various diagrams it supports. Aspect is a

projection into a model, which is seen from a given

perspective and omits entities that are not relevant to this

perspective [3]. Aspect model means elements of IS model

that can be visualised by several the same aspect diagrams.

Sometimes the models of class, state, and other aspects

are not interrelated and even more, contradictory

information can be provided in them. For example, it is

possible that elements created in class model, are not used

when modelling states of class. Expression of an IS through

various models is related to the problem of consistency

ensuring of different aspects models. Consistency means that

the structures, features and elements that appear in one

Manuscript received July 25, 2012; accepted December 4, 2012.

model are compatible and in alignment with the content of

other models [3]. Sometimes consistency concept is misused

for expressing well-formedness of IS models. Well-

formedness is concerned with a correct use of notations to

describe one aspect model, consistency among diagrams

usually are not classified to well-formedness [4].

Model consistency issue is particularly important within

the scope of model-driven architecture (MDA).

Unambiguous models are necessary for the successful

accomplishment of the tasks of model transformation and

finally for code generation. The goal of our research is to

improve methods of checking consistency of different

aspects UML models. UML model is an abstraction of the

physical system, created with a certain purpose and

expressed in UML.

The rest of this paper is organized as follows: section

“Related works” presents approaches of checking UML

models and detailed results of analysis of consistency rules.

The proposed method of checking consistency of UML

models, including requirements of consistency rules are

provided in section “Proposal”. Section “Case Study”

illustrates the evaluation and usage of proposed method.

Finally, conclusions are provided.

II. RELATED WORKS

Different approaches to check UML models and their

consistency rules are researched and presented in the

following subsections.

A. Approaches of Checking UML Models

Initial researchers on checking of UML models appeared

in 2002. Liu et al. [5] were the first ones to suggest the

paradigm of checking of UML models based on reasoning

mechanism of a formal language. Its idea is translating UML

models and their consistency rules to any formal language.

Then inconsistencies are detected using reasoning

mechanism (e.g., forward chaining algorithm or/and engine

that implement it). Rash and Wehreim [6] suggest using

Process Algebra, Object-Z, Mokhati et al. [1] propose

rewriting logic, Miloudi et al. [7] prefer Z language for

formal models. The main advantage of these approaches is

ease of check consistency – availability of inconsistency

detection algorithms of formal systems and inference

Method on Specifying Consistency Rules

among Different Aspect Models, expressed in

UML

R. Dubauskaite
1
, O. Vasilecas

1

1
Department of Information Systems, Vilnius Gediminas Technical University,

Sauletekio al. 11, LT-10223 Vilnius, Lithuania

ruta.dubauskaite@vgtu.lt

http://dx.doi.org/10.5755/j01.eee.19.3.2058

77

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 3, 2013

engines of a design tool that implement these algorithms.

One of the disadvantages of these approaches is that formal

languages despite they are more precise, they are not popular

in practice for initial models.

Kotulski [8], Wang et al. [9] refines the approaches by

suggesting usage of formal languages, which have visual

expression, for example, Node-label-controlled (NLC)

graphs, OWL-DL (Ontology Web Language). The main

disadvantage of these approaches is that their models, rules

are not defined for UML metamodel provided by OMG

(Object Management Group). They are mapped to

descriptions of UML models, defined by Kotulski [8] and

other researchers. Morover, translation of UML models to

formal models requires additional resources. More

information about rule-based, inference mechanism and

other knowledge-based systems is provided in [10].

Another group of approaches of UML models checking,

which is evolved almost in parallel with approaches based

on UML models translating to formal models, are constraint-

driven approaches. The main idea of them is suggestion to

the check semi-formal UML models according to defined

constraints. Semi-formal model is created using language,

which syntax is defined formally, but most of semantics is

described using natural language [11]. Studies of this group

differ in checked property (consistency or correctness/well-

formedness) and language for expressing rules. Chiorean et

al. [12], Pakalnickiene et al. [13] propose checking

correctness of UML models according to OCL rules that

constrain one aspect model. Chen and Motet [14] propose

controlling grammar C-Control for expressing correctness

rules. Other analysed works propose approaches of checking

consistency of UML models. Sapna and Mohanty [15]

provide several examples of OCL consistency rules and their

translation to SQL, Chanda et al. [16] suggest several

consistency rules expressed in context free grammar. The

main disadvantage of works is that algorithm of checking

consistency of IS models is not presented explicitly. More

details about the research of related approaches are provided

in our previous paper [17].

Both groups of methods uses rules, therefore consistency

rules are researched in detail in the following section.

B. Consistency Rules

A Full, non redundant, clear and meaninglful set of

consistency rules is necessary for method of UML models

consistency checking and especially for automation of

consistency checking process.

Therefore 50 consistency rules were elicited from 10

related researches and examined in order to (a) find out

whether the provided rules may be understood

unambiguously; (b) determine whether they conform to

specification (metamodel) of UML provided by OMG [13];

(c) find out whether they are meaningful. It means if they

really show conflict of consistency. Further these issues are

presented in detail.

Rules expressed in natural language can be interpreted

ambiguously, for example:

Rule 1: Swimlines in Activity diagram (represented as

className in activity state) must be present as a unique

class in class diagram [16]. What is an activity state?

Swimline is a partition? The formal expression for rule 1 is

provided below:

Chanda et al. [16] do not provide mapping of

metaelements of OMG UML metamodel. Therefore it is

unclear exactly how to map elements from their description

of UML models to OMG UML metamodel.

The analysis of consistency rules also reveals that there

are rules contradicting model requirements expressed in

OMG UML specification. Example of such rule is:

Rule 2: Each object and message in a sequence diagram

must have a corresponding class and method in the class

diagram [15]. According to OMG UML specification [11]

only calling messages have to be defined in class (in case

messageSort is either synchCall or asynchCall then message

have to refer to an Operation).

Sometimes rules are meaningless and necessity of them is

doubt, for example:

Rule 3: A specification consisting of an Object-Z class

and an associated state machine has the property of method

executability if in the corresponding process in the semantic

model every method is executed at least once [6]. What is

the origin of the rule? Is it an IS development methodology

or OMG UML metamodel? E.g. method getClientData() is it

really have to be used in State model? May be the rule is

valid in some conditions but they are not provided.

Analysis of consistency rules shows that most rules are

expressed in natural and formal language. The main reasons

of ambiguity are: (a) incompleteness, different structure of

rules e. g. associated elements or models are not defined

explicitly (b) synonyms for the same elements. Formal rules

usually use their own description of UML models. Therefore

it is unclear what elements of OMG UML metamodel they

conform. Besides some consistency rules do not conform to

OMG UML metamodel and their practical necessity is

doubt.

In summary existing works shows that issue of UML

models consistency is important, but there is a need to

improve the approaches of consistency checking.

III. PROPOSED APPROACH ON SPECIFYING OF CONSISTENCY

RULES AMONG DIFFERENT ASPECTS UML MODELS

In general a method of consistency ensuring of UML

models, the processes of UML models checking and

removing inconsistencies is presented in our paper [18].

This section presents a proposed method of checking

consistency of UML models, especially concentrating on

requirements of consistency rules. The necessity of these

requirements origins from results of related work analysis. It

reveals that most rules are ambiguous, do not conform OMG

UML metamodel and they are meaningless sometimes.

Therefore it has negative impact on reusing rules and

developing more comprehensive set of rules.

78

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 3, 2013

The proposal is presented in Fig. 1, the essence of

proposal is:

1. Check consistency of semi-formal IS models using

consistency rules;

2. Define consistency rules among different aspects IS

models according to these requirements:

2.1. Define consistency rules at three abstraction levels:

metamodel independent, metamodel specific and

formal/program code;

2.2. Verify consistency rules according to a metamodel of

modelling language;

2.3. Motivate the necessity of rules defining its origin.

Assigning enforcement level according to their scope of

application.

Fig. 1. Structure of detailed description of consistency rule its associations with metamodel of modelling language.

The idea of modelling is based on three levels applied

from OMG MDA standard. A platform is changed to a

metamodel in adapted MDA transformation schema between

different abstraction levels. According to the adapted MDA

it is required to model consistency rules in series. Every

consistency rule has to be expressed at three levels:

metamodel independent, metamodel specific and

formal/program code.

At the metamodel independent level a rule is expressed in

natural language. It is necessary for general understanding of

the rule, even for developer, who has not special knowledge

of modelling languages. Rules expressed in a natural

language can be interpreted variously. In order to reduce

ambiguity it is required to elaborate a consistency rule,

expressed in a natural language.

At the metamodel specific level a structured consistency

rule refers to OMG UML metamodel metaelements. It is

important to emphasise that it is required to associate

metaelements from UML specification developed by OMG.

Because the reviewed related researches show that UML

models descriptions provided by various authors use

different concepts for the same objects. At this level it is also

required to define an aspect model, which contains an

instance of the associated metaelement. To simplify a

metamodel specific rule it is recommended to divide it into

two parts (Table I).

The third level of a consistency rule is formal or program

code level. Expressing consistency rule in formal or

programming language it is not mandatory, because formal

rules or program code are seldom provided in specification

of software system. On the other hand, formal rules can be

interpreted unambiguously and rules of program level can

reduce time of IS development.

The analysis of existing consistency rules shows that

constraint, which is valid always, is too strict in practice.

Moreover, consistency rules are defined at metamodel level

and, it means that they are sufficiently general. General rules

usually do not include specific cases. Hence there are

situations when the detected violations of consistency rules

do not mean consistency conflict. Therefore, it is proposed

to define an enforcement level of a consistency rule. It

indicates the necessity of reaction (if it is necessary to

modify models) to the detected consistency conflict. If the

detected violations of rules show consistency conflicts

depend on specific situations, then IS engineer or a

knowledge expert can decide whether the situation is

inconsistent. A consistency rule has to be assigned with one

of three enforcement levels that are presented in Table II.

TABLE I. SPECIFICATION OF CONSISTENCY RULE 4.

Rule ID R4

Rule at a metamodel

independent level

The class which states are modeled has to

be known in Protocol states model

Rule at

meta-

model

specific

level

Rule
Context of protocol states has to be defined

by the class.

Associated

meta-

elements

Context of Protocol

State Machine

Classifier of

Class model

Enforcement level High

Descrip

-tion

A protocol state machine presents possible and permitted

transitions on the instances of its context classifier,

together with the operations that carry the transitions. In

this manner context – class, which operations can be

called, and their execution that determines changes of

states of the object have to be defined. The origin of this

constraint is the analysis of UML superstructure

specification provided by OMG [19].

Consistency rule R4 can be expressed as OCL invariant:

context ProtocolStateMachine inv protocol

States_without_context:self.oclAsType(State

Machine).region.context->notEmpty()

In order to prove the necessity of a rule, to reduce number

of meaningless rules it is required to provide a description of

consistency rule. The description has to include an

79

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 3, 2013

explanation of the rule, a definition of origin and a scope of

validity (explanation why one or another enforcement level

is chosen). The origin of the rule can be OMG UML

specification, IS development methods, e.g. RUP, ICONIX,

Newton, practical work analysis, etc. Example of

consistency rule specification is provided in Table II.

TABLE II. ENFORCEMENT LEVEL OF CONSISTENCY RULES.

Enforcement level
Type of message about violation of the

rule

Low Information

Medium Warning

High Error

IV. A CASE STUDY

The first experiment is aimed at the evaluation of the

proposed requirements for consistency rules. We

demonstrate how various consistency rules from different

papers ([4], [15], [16]) and our rules (specified using the

proposed requirements) are understood by analysts,

designers, programmers, and quality engineers.

The researches of Egyed [4], Sapna, Mohanty [15] and

Chanda et al. [16] are selected for the experiment because

their approaches are the most similar to our proposal

compared to other analyzed related researches. In this study

the questionnaire is filled by 14 specialists that have

theoretical or/and practical knowledge about UML. The

questions were about knowing of semantic, associated

metaelements, conformance to the metamodel, knowing the

origin of rule. Analysis of collected data was performed

using paired t-test [21] method (Table III).

The second experiment is the extension of UML tool with

the UML models consistency checking module prototype

ConsistencyConstraint4UML. The purpose of the

investigation is to test consistency of specific IS models

using a developed software prototype. The usage of the

implemented software prototype is provided in Fig. 2.

TABLE III. APPLICATION OF PAIRED T-TEST FOR COMPARING PROPOSED AND PREVIOUS [5, 7, 18] METHODS.

Paired t-test method [24] Application of Paired t-test

Input

Paired samples: (x1, y1), (x2, y2) … and (xn, yn), in this case

n-number of participants that provide answers to questionnaire;

x-count of positive (‘yes) answers about proposed method. y-

count of positive (‘yes) answers about previous methods

The 14 paired samples obtained after calculating total number

of answers ‘yes’ (to questions about unambiguity and reliability

of consistency rules from our and previous methods) provided

by 14 participants

(13, 4), (10, 7), (14, 10), (12, 9), (10, 8), (8, 9), (8, 10), (11, 9),

(9, 7), (14, 8), (12, 7), (8, 6), (11, 9) and (12, 5).

H0 (Null

hypotheses)

H1

(Alternative

hypotheses)

H0: The expected mean of differences (di = xi,-yi) is 0 (µd = 0);

H1: The expected mean of differences is more than 0 (µd > 0)

H0: The proposed method has the same quality (unambiguity

and reliability) as previous methods.

H1: The proposed method has better quality (more answers ‘yes’

about unambiguity and reliability) compared with previous

methods.

Calculations
Calculate

nS

d
t

d

=0 , where
1

)(
1

2

−

−

=

∑
=

n

dd

S

n

i
i

d

�

Based on the data it can be seen that n = 14 The mean of

differences is µd = 3,143 (Formulas are provided in first

column of the table).

It can be found that Sd = 3,931 and t0 =4,011.

Criterion

If 1,0 −> ntt α reject H0 (H0: µ0 > 0) and acce

pt H1 (H1: µ0 > 0), where ft ,α is the upper α percentage point

of the t distribution with f degrees of freedom, which is equal to

n – 1. The distribution is tabulated in Table A1 from [21], which

presents critical values two-tailed t-test (5 %).

The number of degrees of freedom is f = n -1 = 14 – 1 = 13. In

Table A1 from [21], t0.5, 13 = 2.160.

t0 =4,011>2.160= t0.5, 13 therefore H0 is rejected and H1 is

accepted with 95% (100%-5%) confidence level.

Fig. 2. Checking of IS models using developed module ConsistencyConstraints4UML.

UML models are validated according to every consistency

rule. The detected consistency conflicts are shown at the

bottom of the right column in validation results section of

Fig. 2. Left column of Fig. 2 provides part of UML models,

80

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 3, 2013

developed using MagicDraw UML 17.0 tool. In the right

column of Fig. 2 a states model is visualized using protocol

states diagram. The diagram represents possible states of a

class Book. Book is a part of library IS.

The last step of ensuring consistency of UML models is

modifying of IS models according to detected consistency

conflicts. If method cancelReservation() is associated with

transition from Book state Reserved to state Returned then

consistency of library system models would be improved.

V. CONCLUSIONS

The analysis of methods for IS models consistency

checking and their consistency rules shows the relevance of

that the solved problem. Various methods using constraints

for IS models or using algorithm/engine of a formal

language for detecting inconsistencies are proposed.

However there is no any comprehensive method how to

check consistency and to create a more understandable and

more reliable set of consistency rules.

A method of IS different aspects models not related with a

specific modelling language is proposed. The feasibility of

the proposed method is illustrated creating a set of

consistency rules for UML models according to the

proposed requirements. The rules are defined at the

metamodel level; therefore, they can be implemented in any

design tool that supports UML 2.2 metamodel.

The evaluation of the results obtained during the

experiment showed that the proposed requirements for

consistency rules improve the quality of a set of the rules

(less ambiguity, more reliability) by approximately 41% in

comparison with other similar methods. The consistency

rules that are specified according to the proposed

requirements are also more understandable by IS engineers

compared with the rules provided by other researches.

The experiment performed demonstrated that the usage of

the developed module ConsistencyConstraints4UML allows

detecting consistency conflicts among different aspects

models.

REFERENCES

[1] F Mokhati, P. Gagnon, M. Badri, “Verifying UML Diagrams With

Model Checking: A Rewriting Logic Based Approach”, in Proc. of

the Seventh International Conference on Quality Software (QSIC),

Portland, 2007, pp. 356–362. [Online]. Available:

http://dx.doi.org/10.1109/QSIC.2007.4385520

[2] R. Dubauskaite, O. Vasilecas, “Tool Support for Checking

Consistency of UML Model”, in Proc. of the 20th International

Conference on Information Systems Development (ISD 2011),

Edinburgh, Scotland, 2013.

[3] N. Rozanski, E. Woods, Software System Architecture. London,

2005, p. 546.

[4] A. Egyed, “Fixing inconsistencies in UML design models”, in Proc.

of the 29th International Conference on Software Engineering (ICSE

2007), New York, 2007, pp. 292–301. [Online]. Available:

http://dx.doi.org/10.1109/ICSE.2007.38

[5] W. Liu, S. M. Easterbrook, J. Mylopoulos, “Rule-based detection of

inconsistency in uml models”, in Proc. of the 5th International

Conference on the Unified Modelling Language (UML 02), London,

2002, pp. 106–123.

[6] H. Rasch; H. Wehrheim, “Checking Consistency in UML Diagrams:

Classes and State Machines. Formal Methods for Open Object-Based

Distributed Systems”, LNCS 2884, pp. 229–243, 2003.

[7] K. E. Miloudi, Y. E. Amrani, A. Ettouhami, “An Automated

Translation of UML Class Diagrams into a Formal Specification to

Detect UML Inconsistencies”, in Proc. of the Sixth International

Conference on Software Engineering Advances (ICSEA 2011),

Barcelona, 2011, pp. 432–438.

[8] F. L. Kotulski, “Assurance of system consistency during independent

creation of UML diagrams”, in Proc. of the International Conference

on Dependability of Computer Systems (DepCoS-RELCOMEX

2007), Szklarska Poreba, 2007, pp. 51–58.

[9] Z. Wang, et al., “Ontology Based Semantics Checking for UML

Activity Model”, Information Technology Journal, vol. 11, no. 3, pp.

301–306, 2012. [Online]. Available: http://dx.doi.org/

10.3923/itj.2012.301.306

[10] R. Butleris, A. Lopata, M. Ambraziunas, S. Gudas, “The Main

Principles of Knowledge-Based Information Systems Engineering”,

Elektronika ir Elektrotechnika (Electronics and Electrical

Engineering), no. 4, pp. 99–102, 2012.

[11] OMG. 2010a. Unified Modelling Language (OMG UML),

Superstructure, v2.3, OMG Document: formal (2010-05-05).

[Online]. Available: http://www.omg.org/docs/formal/10-05-05.pdf

[12] D. Chiorean, et al., “Ensuring UML models consistency using the

OCL Environment”, in Proc. of the ENTCS, 2004, pp. 99–100.

[13] E. Pakalnickiene, L. Nemuraite, “Checking of conceptual models

with integrity constraints”, Information technology and control, vol.

36, no. 3, pp. 285–294. 2007.

[14] Z. Chen, G. Motet, “A Language-Theoretic View on Guidelines and

Consistency Rules of UML”, LNCS 5562, pp. 66–81, 2009.

[15] P. G. Sapna, H. Mohanty, “Ensuring consistency in relational

repository of UML models”, in Proc. of the 10th International

Conference on Information Technology (ICIT 2007), Rourkela, 2007,

217–222.

[16] J. Chanda, et al., “Traceability of Requirements and Consistency

Verification of UML UseCase, Activity and Class diagram: A Formal

Approach”, in Proc. of International Conference on Methods and

Models in Computer Science 2009 (ICM2CS 09), New Delhi, 2009,

pp. 1–4.

[17] O. Vasilecas, R. Dubauskaite, R. Rupnik, “Consistency Checking of

UML Business Model”, Technological and Economic Development

of Economy, vol. 17, no. 1, pp. 133–150, 2011. [Online]. Available:

http://dx.doi.org/10.3846/13928619.2011.554029

[18] R. Dubauskaite, O. Vasilecas, “Ensuring Models Consistency in the

OMT, Booch, and OOSE Object-Oriented Methods”, Information

Sciences, no. 50, pp. 160–167, 2009.

[19] A. G. Kleppe, J. B. Warmer, W. Bast, MDA Explained– The Model

Driven Architecture: Practice and Promise. Addison-Weley, 2004, p.

171.

[20] D. Vavpotic, M. Bajec, “An approach for concurrent evaluation of

technical and social aspects of software development methodologies”,

Information and software technology, vol. 51, no. 2, pp. 528–545,

2009. [Online]. Available: http://dx.doi.org/10.1016/

j.infsof.2008.06.001

[21] C. Wohlin, et al., Experimentation in Software Engineering: An

Introduction. United Kingdom, 2000, p. 204.

81

