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1Abstract—We present a novel and efficient false positive
reduction stage, using stacked sparse autoencoder, for the
automatic detection of large nodules in computed tomography
(CT) images. The discriminative features are automatically
learnt in unsupervised manner. The initial candidates are
segmented using candidate detection method specifically
designed for the large nodules. For each candidate, 3D
grayscale clusters are computed and, are later resized into a
uniform size of 10 × 10 × 5 for feature mapping. Finally, a
softmax layer is used for the binary classification. Data
augmentation, sparsity regularization, and L2 weight
regularization are applied to overcome the generalization issue.
On 899 CT scans taken from LIDC-IDRI, our method yields a
high detection sensitivity of 90 % with only 4 false positives per
scan and an area under receiver operating curve of 0.983. An
external validation on a completely independent dataset from
PCF is also performed to evaluate the potency of the proposed
method. We showed that the proposed stacked sparse
autoencoder is efficient enough to be accommodated as a false
positive reduction phase in a computer-aided-detection system.

Index Terms—Computer–aided detection; pulmonary
nodule; stacked sparse autoencoder; unsupervised learning.

I. INTRODUCTION

Worldwide, lung cancer is one of the main cause of
cancer-induce death. Detection in the very late stages results
in an ineffective treatment planning and high mortality rate.
It is thus essential and crucial to detect the cancerous lesions
in the early stages. The results of the national lung screening
trial (NLST) reported a significant reduction of 20 % in lung
cancer mortality rate as a result of using low-dose computed
tomography (CT) imaging modality. The findings of NLST
also encouraged other countries to organize such large scale
lung cancer screening trial [1].

However, data processing during such screening trials
remains a major challenges, specifically in terms of
radiologists’ (human readers) efficiency. In general,
interpreting the acquired CT scans is a monotonous, error-
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prone and time consuming tasks, which can certainly affect
the efficiency of the readers. Hence, automation of CT scan
analysis is becoming a crucial field of research [2].

For minimal human interaction with adequate efficiency,
computer–aided detection (CAD) systems are utilized as a
second reader to automatically detect the lesions during the
screening trials. In such scenarios, to improve the detection
accuracy, radiologists initially mark the lesions in an
unaided manner and later cross–validate their markings with
the CAD findings. Eventually, this process yields a high
accuracy but also increases the reading time. An efficient
way to reduce the reading time could be to accommodate the
CAD as first reader followed by a visual inspection of the
CAD findings by radiologists to make a quick inspection
and to maintain the integrity of workflow [3].

A fundamental requirement for a CAD system to be
accommodated as a first reader is that it yields a high
sensitivity for all relevant lesions/nodules. The general
pipeline of a CAD system consists of an initial candidate
detection step followed by a false positive reduction step
[4]. The initial candidate detection step aims to achieve a
high sensitivity and, unfortunately, typically results in a
bigger set of false positives (FP). FPs are then successively
reduced in the next step, which also enhances the overall
performance of the CAD systems. During the FP reduction
step, a large set of low–level features such as blobness,
cluster, and intensity are computed for a supervised
classification scheme [4].

In last two decades, several CAD systems have been
proposed that yielded a high detection accuracy against
multiple phenotypes of nodules but that were unable to
achieve an adequate FP rate. The outcome of ANODE09 [5]
showed that these systems are unable to detect the less
prevalent class of nodules (i.e. large nodules). One reason
for degradation in the detection performance is the number
of large nodules (malignant lesions); which is quantitatively
smaller in comparison to the number of other smaller
nodules. The FP reduction step is often trained with
randomly selected candidates; hence, large nodules are often
undersampled in the training set and eventually considered
as lower priority candidates. Another reason is the extraction
of underlying features of the lesions, which can exhibit the
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same characteristics as non-nodules, resulting in a difficult
process of low–level feature extraction steps. The
motivation behind the proposed work is to overcome these
limitations by means of a so-called autoencoder.

Recently, convolutional neural networks (CNN) in
supervised learning, together with large amounts of
augmented data, are effectively used in several medical
imaging applications [6]. Conversely, an autoencoder [7]
with multiple hidden layers can be trained in an
unsupervised fashion wherein each layer can efficiently
learn to map the input features. However, training the
autoencoder with multiple hidden layers can be complicated
in practice. It is thus effective to train individual layers at a
time. Although, being so efficient, there is still no work that
use an autoencoders to analyze the CT volumetric data. To
the best of our knowledge, this is the first work, which
reports an unsupervised feature mapping technique using
autoencoders for lung image database consortium/image
database resource initiative (LIDC/IDRI) data which is also
validated on the PCF dataset. Some examples of the
detected lesions from the PCF dataset are shown in Fig. 1.

Fig. 1. Some example of detected lesions from the PCF dataset. The
detected nodules are marked in the yellow bounding box.

A. Objective and Contribution
In this work, a fully automated computer aided detection

(CAD) system specifically designed to detect large
pulmonary nodules is proposed. The ultimate objective of
this work is to increase the reading efficiency of the CAD
system. The contribution of the work are as follows: (1) We
formulate a novel FP reduction stage using stacked sparse
autoencoder (SSAE) to classify the malignant nodule. The
candidates are extracted through our existing algorithm,
which also boost the sensitivity of the initial candidate
detection stage. (2) a performance benchmark is presented
and compared with the previously reported CAD systems;
and (3) the proposed method is also validated on a
completely independent dataset.

II. IMAGING DATA

In this work, the CT cases (DICOM formatted) from two
datasets are utilized for training and independent validation
of proposed CAD system. The CT scans from LIDC/IDRI
are used for the training and the supervised validation of the
proposed CAD system. Additionally, CT scans from the
PCF dataset are used for independent validation of proposed
CAD system.

A. Lung Image Database Consortium (LIDC)/Image
Database Resource Initiative (IDRI)

We utilized the largest publically available dataset to train
and validate the proposed CAD system. LIDC-IDRI consists
of a heterogeneous set of 1018 CT scans captured at seven
different institutes. Each scan is annotated by up to 4
radiologists in a two-phase annotation process (blind and

unblind). Additionally, boundary outlines and subjective
ratings of each lesion are also provided. [8], [9]

In this work, the CT cases of slice thickness up to 3 mm
are utilized, resulting in a set of 899 CT scans. Other CT
cases are rejected due to unacceptable slice thickness [10].
To overcome the variance in the boundary outlines marked
by multiple radiologists, the individual outlines of each
reader are overlapped to compute a centre-of-mass.

The diametric size of each nodule is calculated according
to the criteria reported in [3]. Then, a diameter of 10 mm
(diametric size of sphere) is considered as the size threshold
criterion to develop a reference set, which consists of 289
nodule candidates. Note that, only those nodule candidates,
which were marked by at least 3 radiologists are selected.

B. External Validation data (PCF)
VIA Cornell University released a public dataset of

thoracic CT scans for the early detection and diagnosis of
lung cancer. The data can be accessed on VIA website [11].
PCF consists of heterogeneous cancer cases. We selected 33
CT scans consisting 40 large nodule candidates for
independent validation of the proposed CAD system. For
every case, nodule annotations (spatial coordinates of
nodule center, diameter, and volume) are also provided.

III. METHODOLOGY

The outline of our proposed CAD system for the detection
of the large nodule candidates is shown in Fig. 2. The CAD
pipeline is divided into two stages: i) initial candidate
detection and ii) FP reduction. Current work emphasizes on
the FP reduction stage. The initial candidate detection stage
is reported elsewhere [12], and briefly discussed here.

Fig. 2. Overview of the developed CAD pipeline. The dotted box is the
initial stage and the box with bold line is the FP reduction stage.

A. Initial Candidate Detection Stage
The initial candidate detection stage consists of multiple

steps. Initially, a thresholding based method is implemented
to segment the lung regions in each section of the CT
volume. Then, a morphological closing operation is used to
further refine the segmented lung region. For the initial
candidate detection, a multistage rule based sub−algorithm
module consisting of six stages is developed.

The grayscale masks of all labelled candidates are
initially extracted from the lungs. Secondly, a normalized
intensity value of 0.007 is calculated to segment the
grayscale masks. This is followed by a morphological
branchpoint operation is used to refine the juxta–vascular
candidates. Next, a morphological erosion operation using
disk kernel with radius of 2 pixels is used for further
segmentation. Subsequently, circularity is considered as a
rule to detect the candidates wherein a candidate that ranges
between the threshold values of 9−380 is considered for next
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stage. Lastly, an additional morphological dilation operation
using disk kernel with a radius of 2 pixels is applied on the
final candidates.

B. Connected Component Analysis
Connected voxels of each candidate are clustered via 3D

connected component analysis using a 26–points
connectivity scheme. The centroids of the candidates in the
consecutive slices (Is) of a 3D cluster is computed using (1).
The clusters of size between 268 mm3–34,000 mm3

(diametric size of sphere: 8 mm–40 mm) are considered as
the potential candidates for the next stage of the CAD
system
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(1)

where Cx, Cy, Cz and are the centroids of the cluster and N is
the total number of the coordinates for the cluster.

C. 3D Cluster Resizing
The initially detected candidates are resized into a cluster

of 10x10x5 to compute a uniform size for the next stage of
the CAD system. We adopted the 3D affine transformation
using cubic interpolation to resize the extracted cluster.

D. Candidate Augmentation
Prior to the FP reduction stage, the initially computed

nodule candidates are augmented using a 3D affine
transformation based rotation method. Each candidate was
rotated, along its center–of–mass, at different degrees in the
x, y, and z directions, resulting in 150 angular rotated
candidates for each original candidate. The reason for doing
so is to overcome the generalization issue of the classifier
and also to enhance the performance of the classifier.

IV. AUTOENCODER

An autoencoder is an unsupervised neural network that
tries to learn high–level features and maps the output exactly
as the input (feature mapping), resulting in the same size as
the input [13]. The hidden layers (see Fig. 4) are
individually trained in an unsupervised fashion to map the
high–level features. A softmax layer can then be stacked
with the autoencoders to perform the classification. Finally,
all the layers are integrated to form a deep network and to be
trained for the final time in a supervised fashion to improve
the overall performance. The architecture of the proposed
SSAE is illustrated in Fig. 3. During this study, several
parameters (such as number of neurons in the hidden layers,
learning rate, L2 weight regularization, numbers of
encoders) were optimized. The scaled conjugate gradient
descent algorithm is used for training.

A. Feature Mapping: Stacked Sparse Autoencoder (SSAE)
SSAE tries to find the optimal training parameter
 , ,h xW b b  by minimizing the error between the input

and the reconstructed output. Here, W is the weight
parameter; bh and bx are the bias of each layer. After
obtaining the optimal , the SSAE computes a function

(2): x h
ddf R R to map the intensities of the input cluster

in a new feature representation (2)(2) (x) .h
d

h f R 

Fig. 3. Proposed architectural design of the stacked sparse autoencoder.

The voxel intensities of each training cluster x(k) are
represented as a low–level structured representation of input
candidates in the first hidden layer. The second hidden layer
(h(2)) represents the high–level features. After the 2nd hidden
layer, all the training clusters can be represented as

 (2)
1

( ), ( ) ;
N

k
h k y k


where k is the total number of cluster,

and  (2) ( ), ( )h k y k represents the high level features and

their label. Informatively, the label information y is not used
during the SSAE training process. Next, the high level
features and the label of each candidate are fed into the
softmax classification stage (SCS).

B. FP Reduction: SCS
A softmax classifier is a supervised model used to solve

the binary classification problems. Mainly, it aims at
minimizing the cross entropy error loss using (2)
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where  (3)w
f z is a cross–entropy function and z is the

output of h(2) and T is the transposed matrix.

TABLE I. DISTRIBUTION OF CANDIDATES IN THE DIFFERENT
FOLDS. FINAL SELECTED CANDIDATES ARE MARKED IN BOLD.

Candidates Training Validation Test

nodule 190 41 42

aug (nod) 28,500 6,150 6,300

Non–nodule 35,803 7,850 8,020

C. FP Reduction: Training
During the training process, the parameters  and the

high level features (computed from h(2)) are determined. The
general procedure of feature mapping is shown in Fig. 4.
The training of the classifier is done according to a 3–fold
cross validation scheme. For each fold, 70 % of the data is
used for training the model, 15 % for validating the
parameters, and 15 % for testing the model. The statistics on
the distribution of the detected candidates in the different
folds are shown in Table I.
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D. FP Reduction: Evaluation
The proposed CAD system is evaluated using two

performance metrics: 1) area under the ROC curve (AUC)
and 2) Competition performance metric (CPM) [14]. CPM
computes the average sensitivity at seven false positive/scan
points {1/8, 1/4, 1/2, 1, 2, 4, and 8} of the free-response
receiver operating characteristic (FROC) curve. FROC is an
extension of ROC. It is more sensitive at detecting small
difference between performances and has higher statistical
power [15]. Additionally, the 95 % confidence interval
using bootstrapping with 1000 bootstrap is also computed.

Fig. 4. Feature mapping process in hidden layers of the autoencoder.

TABLE II. CPM AT DIFFERENT FP/SCAN AND AREA UNDER
CURVE (AZ) FOR BOTH DATASET.

Dataset 1/8 1/4 1/2 1 2 4 8 CPM Az
LIDC/ID

RI 0.40 0.56 0.80 0.84 0.88 0.90 0.92 0.77 0.98

PCF 0.02 0.17 0.32 0.39 0.48 0.74 0.79 0.42 0.82

V. RESULTS AND DISCUSSION

On the 899 CT scans from the LIDC/IDRI dataset, the
initial candidate detection stage yields a sensitivity of
94.4 % (273/289). As on the given data (see, Table I), the
performance of the proposed CAD scheme is satisfactory in
terms of sensitivity across different operating points of
FROC. The FROC curve for both datasets (i.e. LIDC/IDRI
and PCF) is shown in Fig 5. The figure also shows the
average CPM for both datasets. The 95 % bootstrap
confidence interval for both datasets is also shown.

For quantitative evaluation, the CPM at different FP/scan
points for each dataset are also shown in Table II. The CAD
system achieved considerable overall sensitivity of 90 % at
4 FP/scan and AUC (Az) of 0.98. Notably, the adequate
performance of the classification stage is boosted by the
sensitivity of the initial candidate detection stage. It reflects
that the classification stage correctly classifies the 96.3 %
(263/273) nodules from the initially detected candidates at 8
FP/scan. For the 33 CT scans of the independent dataset
(PCF), the classification stage yielded a sensitivity of 74 %
at 4 FPs/scan and AUC (Az) of 0.82.

Fig. 5. FROC curve for the LIDC-DIRI dataset and the independent
datasets (PCF). The two light gray curves and the the two red curves show
the 95 % bootstrap confidence intervals for the LIDC/IDRI and PCF
datasets, respectively. The number of false positives are shown on a
logarithmic scale.

It is seemingly challenging to directly compare the
proposed CAD system with different existing CAD systems
due to the high variance in the selection criteria of lesions in
the training, validation and testing datasets. Additionally,
performance evaluation on secluded datasets and
insufficient information may also influence the direct
comparison. However, we still compared our results with
the previously reported CAD system in Table III.

TABLE III. STATISTICAL COMPARISION OF PREVIOUSLY
REPORTED CAD SYSTEMS ON LIDC/IDRI DATABASE.

Authors No of
scans

Nodule size
(mm)

No of
nodules

Sensitivity
(%) FPs/scan

Setio et al.
[4] 888 ≥3 1186 90.1 4

Torres et al.
[16] 949 ≥3 1749 80 8

Brown et
al. [17] 108 ≥8 68 79.3 1

Tan et al.
[18]  360 ≥3 NA 83 4

Lu et al.
[19] 294 ≥5 631 85.2 4

Proposed
method 849 ≥10 289 90 4

In the future, it will be interesting to investigate the same
methodology for the smaller size nodule candidates (benign
candidates), which is a more complex problem in terms of
features mapping. It will also be interesting to investigate
the performance of the ensemble of the unsupervised
classifiers for robust and reliable predictions.

VI. CONCLUSIONS

In this work, an unsupervised FP reduction step for
automatic detection of large nodules in CT images is
presented. For LIDC/IDRI, the proposed CAD system
trained using an SSAE achieved a competitive sensitivity of
90 % at 4 FPs per scan. The proposed false positive
reduction step could be integrated with the previous
methods to further supplement the performance of the CAD
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framework. The proposed CAD system can thus be
considered as a decision aider in the lung nodule detection
scenario. However, evaluation of the proposed CAD system
on more datasets is still a foremost requirement for effective
and reliable usability.
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