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1Abstract—This paper discusses the scattering of
electromagnetic (EM) waves from three – dimensional (3D)
rough fractal surfaces using the Kirchhoff approximation. In
particular, it introduces a novel method to characterize 3D
rough fractal surfaces from spectral information of the
backscattered EM wave in Synthetic Aperture Radar (SAR)
applications. It represents an important extension of a previous
recent paper by the same research group from 2D fractal
surfaces to 3D fractal surfaces (the latter representing real –
life SAR radar scenes). More specifically, in the present
simulation scenarios it is assumed that the radar emits a burst
of radar pulses of increasing carrier frequency [therefore a
‘stepped – frequency’ (SF) SAR radar]. By calculating the
backscattered EM wave from 3D fractal surfaces as a function
of the above radar frequencies (therefore, a ‘spectral method’),
it is found here that the slope between the main backscattered
lobe and its adjacent side lobes increases with increasing
surface fractal dimension (i.e. with increasing surface
roughness). In this way a characterization of 3D fractal rough
surfaces from backscattered SAR radar data is achieved, as
explained in detail in this paper.

Index Terms—Three-dimensional fractal surface; surface
fractal dimension; scattering of electromagnetic waves;
Kirchhoff approximation; synthetic aperture radar (SAR);
backscattering coefficient.

I. INTRODUCTION

In the last decades there has been a growing interest in the
scattering of optical, electromagnetic and acoustical waves
from rough surfaces. A very interesting and very popular
approach to represent rough surfaces encountered in real –
life has been proposed by Mandelbrot and other scientists,
who presented the concept of fractals [1], [2]. Scattering of
EM waves from fractal rough surfaces has been examined in
the past in [3]–[7], where 2D self – similar fractal surfaces
have been considered, the corresponding surface ‘fractal
dimension’ has been introduced and the Kirchhoff
approximation for EM wave scattering was used. In contrast
to our recent publication [3], where monostatic scattering is
considered and the main idea of the present paper is
introduced for the simpler case of 2D fractal surfaces,
bistatic scattering was considered in all other cases of Refs.
[4]–[7]. Furthermore, a variant of 2D self – similar fractal
surface representation, namely a ‘one-dimensional
bandlimited Weierstrass function’, was introduced in [8],
which will be generalized in this paper for 3D fractal
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surface. Furthermore, in those years (1994), a ‘two-
dimensional bandlimited Weierstrass function’ (i.e. a 3D
surface) was also proposed by Lin et. al. [9], in order to
study the bistatic scattering of EM waves from 3D fractal
surfaces. However, in this paper we adopt a much simpler
representation of 3D fractal surface, introduced in 2012 by
Zaleski [10]. Moreover, the mathematical formulation for
EM scattering from either 2D or 3D rough surfaces, and the
‘Kirchhoff approximation’ to that in particular, used in the
majority of the above references, was initially presented by
Beckmann and Spizzichino in [11], also used in this paper
for our backscattering spectral considerations. Furthermore,
the Kirchhoff approximation mentioned above is initially
valid under the assumption that the wavelength of the
incident EM wave is much smaller than the local radius of
curvature of the surface roughness, i.e. surface roughness is
small as compared to the wavelength of the incident EM
wave radiation [11]. Finally, further references concerning
the problem considered in this paper are provided at the
References Section [12]–[20].

In Section II of this paper, the problem geometry, as well
as a short presentation of the mathematical formulation for
EM wave scattering from rough surface using the Kirchhoff
approximation, are presented. Furthermore, in Section III
our simulation results in the spectral domain (i.e.
backscattering coefficient as a function of radar frequency)
are presenting, ultimately yielding to 3D rough surface
characterization from backscattered SAR radar data. Finally,
conclusions are presented in Section IV and future research
goals in Section V of this paper.

II. PROBLEM GEOMETRY AND MATHEMATICAL
FORMULATION

The geometry of the 3D scattering problem is shown in
Fig. 1. Here, an incident EM plane wave illuminates a three
dimensional (3D) rough fractal surface f(x,y), where the
illuminated area of the surface (due to limited radar antenna
beamwidth) is given by A = 4LxLy ,with –Lx < x < Lx , –Ly <
y< < Ly.

The angle of incidence of the EM wave is θ1 with respect
to the vertical z axis, while the elevation and azimuth angles
of scattering of the EM wave are θ2 and θ3 with respect to
the vertical z axis and horizontal x axis, respectively (see
Fig. 1). The incident and scattering wave vectors are
denoted by ki and ks, respectively. Regarding the modeling
of the 3D rough fractal surface, we introduce here a
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bandlimited Weierstrass function of two variables, (1)
below, as a straightforward extension of similar Weierstrass
functions provided in the past by Jaggard [8] (function of
one variable) and by Zaleski [10] (function of two
variables).

Fig. 1. Geometry of rough surface scattering problem, in which an incident
plane EM wave illuminates a three dimensional fractal rough surface patch
of size (2Lx ×2Ly) at an angle of incidence equal to θ1.

Therefore, the equation proposed here, which describes
the modified two-dimensional bandlimited fractal
Weierstrass function for modeling 3D rough fractal surfaces
is given by
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where σ is the standard deviation (rms height), C is the
amplitude control factor, N is the number of tones, b1 and b2

(b1 > 1, b2 > 1) are the spatial - frequency scaling
parameters, b is a constant (b > 1), D (2 < D < 3) is the
roughness fractal dimension, K1 and K2 are the fundamental
spatial wave numbers in the direction of x and y
respectively, and φn1, φn2 are arbitrary phases with uniform
distribution over the interval [-π, π]. The amplitude control
factor C is calculated below, so that the above function has
always standard deviation (rms height) equal to σ. This
calculation yields the following expression for C (see, e.g.
[5])
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To illustrate the fractal function of (1) for different values
of fractal dimension D, some representative simulations of
that are shown in Fig. 2. As the fractal dimension increases
through the values D = [2.10, 2.50, 2.90] of Fig. 2, the
roughness of the 3D fractal surfaces increases, as well.

For the plane EM wave incidence of Fig. 1, the so –
called ‘scattering coefficient’ γ at an arbitrary scattering
direction (θ2, θ3), which represents the scattered electric
field at that direction normalized by the scattered electric
field at the so – called ‘specular direction’, i.e. at direction
(θ3 = 0, θ2 = θ1) is given by [11]
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and e(Lx, Ly) represents the so called ‘edge effect’.

(a)

(b)

(c)
Fig. 2. Sample plots of fractal function f(x,y), (1), for different values of
fractal dimension D.

Note that in (3) above, k is the wavenumber of the
incident EM wave (k = 2πf/c, where f is the frequency of the
incident EM wave). Furthermore, note that at the right –
hand – side (RHS) of (3), the first term provides the most
significant contribution to the scattering process, while the

D=2.50

D=2.90

D=2.10

46



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 4, 2017

second term e(X, Y) is the so – called ‘edge effect’, which
can be neglected when A >> λ2 [11], as assumed in this
paper.

Figure 3 gives representative examples of scattering
patterns from 3D fractal surfaces for different values of
fractal dimension D, as numerically calculated by our
research group by using (3)–(8) above.

(a)

(b)
Fig. 3. Bistatic scattering patterns for the scattering coefficient γ
(magnitude) as a function of the scattering angles θ2 and θ3 of Fig. 1, from
fractal rough surfaces with increasing value of fractal dimension, D = [2.10,
2.90]. Here the angle of incidence is θ1 = 30ο.

It appears that the scattering patterns of Fig. 3 are
angularly directed mostly towards the specular direction for
low fractal dimensions, while they are more angularly
diffused for high fractal dimensions (this was a clear
observation of ours for a very large number of computer
simulations).

Finally note that in the special case of backscattering
(θ3 = 0, θ2 = -θ1) considered in the next Section, the
following equations are derived for the ‘backscattering
coefficient’ γbsc
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III. SIMULATION RESULTS

In this Section, computer simulations are performed
concerning the calculation of the ‘backscattering coefficient’
γbsc, (9)–(10) above, as a function of fractal dimension D of
the rough surface, for a variety of frequencies of a ‘stepped

– frequency’ (SF) SAR radar, i.e. a spectral method for
rough surface characterization. Here, the 3D fractal surface
is simulated by the band-limited fractal function of (1),
while the ‘surface roughness’ is controlled by the fractal
dimension D, as already illustrated in Fig. 2. Namely, the
backscattering coefficient |γ(k)| was calculated from (9) and
(10) for a variety of frequencies fm = f0+(m-1) Δf, where
m=1,2,…,M, M is the number of frequencies of the SF SAR
radar, fo is the carrier frequency, Δf = B/M is the frequency
step and B is the bandwidth of the radar, as also mentioned
in [3], [12]. In these simulations we used, in (1), for
simplicity, K1 = K2 = K (K = 2π/Λ0, where Λ0 is the surface
fundamental wavelength). The parameters used to perform
the simulations are summarized in Table I, where it was
used here Lx = Ly = L, 2L >> Λ0 and kσ < 1, where k = 2π/λ
is the radar wavenumber [3], [5].

TABLE I. SIMULATION PARAMETERS.
No Description Symbol Value

1 spatial frequency scaling
parameters

b=b1 1.8122
b2 2.7183

2 number of tones N 6
3 number of frequency steps M 100
4 radar bandwidth B 2.0 GHz
5 frequency step Δf B/M = 20 MHz
6 carrier radar frequency f0 10 GHz
7 radar wavelength λ c/f0

8 surface rms height σ 0.05λ
9 fundamental surface wavelength Λ0 10λ

10 fundamental surface
wavenumbers K1=K2 2π/Λ0

11 rough surface illuminated length
(patch size) 4LxLy 80λ x 80λ

12 incident angle θ1 30ο

In all our simulations incidence angle θ1 = 30o and
backscattered angle θ2 = - θ1, θ3 = 0. Figure 4 illustrates
plots of |γ(k)| from simulation runs for different values of
fractal dimension D (‘surface roughness’), i.e. D = [2.05,
2.55, 2.85] correspondingly for each figure. From this
figure, we can conclude that as the value of the fractal
dimension D increases, i.e. as the ‘roughness’ of the fractal
surface increases, the emerging slope between the main lobe
of function |γ(k)| and the side lobes in the ‘spectral domain’
also increases.

Table II summarizes the relation between the fractal
dimension D and the calculated slope between the main and
first side lobes. Each slope is equal to |Δγ| / |Δk|, where Δγ
represents the amplitude difference between the peak of the
main lobe and the peak of the first side lobe, and Δk defines
the variation of the wavenumber peaks.

TABLE II. FRACTAL DIMENSION D AND SLOPE CALCULATIONS.

D Left slope
calculations

Right slope
calculations

2.10 0.1 × 10-3 0.1 × 10-3

2.20 0.1 × 10-3 0.1 × 10-3

2.30 0.1 × 10-3 0.7 × 10-3

2.40 0.6 × 10-3 1.0 × 10-3

2.50 0.9 × 10-3 1.5 × 10-3

2.60 1.4 × 10-3 2.2 × 10-3

2.70 1.8 × 10-3 2.4 × 10-3

2.80 2.2 × 10-3 3.0 × 10-3

2.90 2.6 × 10-3 3.4 × 10-3
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An important remark regarding the derivation of the
simulation results of Fig. 4 is that the radar bandwidth must
be sufficiently large, so that the phenomenon of the slope
increase with increasing surface fractal dimension is
observed. It was found here that the bandwidth must be at
least 15 % of the radar carrier frequency, so that this
phenomenon is observed. However, the possible problem of
small available bandwidth in actual radar measurements can
be counter – balanced by increased ‘patch size of
observation’ 2L (see e.g. [3], [5], [7]).

(a)

(b)

(c)
Fig. 4. Magnitude of the backscattering coefficient |γ(k)| as a function of
the wavenumber k, for values of fractal dimension D = [2.05, 2.55, 2.85],
respectively.

To illustrate the relation between the surface fractal

dimension D and the slopes of the scattering coefficient
|γ(k)|, a calculation of the scattering coefficient |γ(k)| was
performed sequentially for different values of fractal
dimension D for values beginning from 2.05 up to value
2.95, with a step equal to 0.05.

All other parameters used in these simulations remained
the same, as shown in Table I. The approach is the same
with that followed by Kotopoulis et. al. [3], where the left
and right slope calculations of |γ(k)|, for each value of D,
were averaged for creating one average slope calculation of
|γ(k)| for each value of D. To verify the proposed method,
uniformly distributed random phase variables φn1, φn2 were
used in (1) in the interval [-π, π] in order to create test fractal
surfaces. In particular, we assume here that the scatterer’s
variations are negligible within the duration of a radar burst,
each one of radar burst consisting of M radar pulses with
increasing radar frequency. The calculation results, after 10
simulations for each D value, are presented in Fig. 5, below.

Furthermore, by ‘inverting’ the data (slope values and
fractal dimension) provided in Fig. 5, the plots of Fig. 6 are
obtained, where in this case the surface fractal dimension D
is plotted as a function of the ‘slope calculations’ of the
scattering coefficient |γ(k)|, similarly to the method used in
[3]. The above simulations show that the roughness of the
3D fractal surface can be characterized by the mean slope
between the main lobe of function |γ(k)| and the first two
side-lobes, adjacent to the main lobe (see Fig. 4–Fig. 6). In
particular, from Fig. 6 it can be seen that there exists a curve
fitting the simulated data, when the fractal dimension D is
provided by the following

,bD a slope c   (11)

where the constants are a = 49.9, b = 0.71 and c = 2.08.

Fig. 5. ‘Average slope’ of the scattering coefficient |γ(k)| vs. value of the
surface fractal dimension D.

In addition, for measuring the fit of the data of Fig. 6 to
the equation provided by (11) above, the ‘R-square criterion
for curve fitting’ was used, which was calculated as R2 =
0.9638 (R2 = 1 corresponds to the ‘perfect curve fitting’).
Moreover, the prediction bounds for the fitted curve were
plotted, where the probability of occurrence is 90 %.

For visual representation of the fractal dimension D
which was used for the simulations, the calculated slope
|Δγ|/|Δk| and finally the calculated Dcalc value, the reader is
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referred to Table III and Table IV, below. In particular,
Table III shows the fractal dimension D that was used in the
simulations vs. the slope that was calculated from these and
the estimated fractal dimension Dcalc. These results show a
good estimation of the rough surface fractal dimension D
(i.e. of the surface roughness), except, for values of D less
than 2.25, in which case the fractal dimension D is predicted
with rather lower accuracy.

Fig. 6. Value of surface fractal dimension D vs. ‘slope calculation’ of the
scattering coefficient |γ(k)|.

Finally, Table IV shows the ‘prediction intervals’ for the
calculated fractal dimension Dcalc estimation from the
‘spectral slopes’ of the backscattering coefficient. As
mentioned also above, the values of ‘prediction intervals’
shown in Table IV correspond to 90 % ‘probability of
occurrence’.

TABLE III. ESTIMATION OF DCALC, b
ca lcD a slo p e c   .

D Slope Dcalc

2.05 0.1 × 10-3 2.15
2.15 0.1 × 10-3 2.15
2.25 0.1 × 10-3 2.16
2.35 0.6 × 10-3 2.33
2.45 1.0 × 10-3 2.45
2.55 1.5 × 10-3 2.57
2.65 1.9 × 10-3 2.66
2.75 2.4 × 10-3 2.76
2.85 2.8 × 10-3 2.85
2.95 3.2 × 10-3 2.95

TABLE IV. DCALC PREDICTION INTERVAL USING PREDICTION
BOUNDS.

Dcalc lower D Dcalc upper
2.05 2.05 2.23
2.08 2.15 2.23
2.08 2.25 2.24
2.25 2.35 2.40
2.37 2.45 2.52
2.49 2.55 2.65
2.58 2.65 2.73
2.68 2.75 2.84
2.77 2.85 2.93
2.78 2.95 2.99

All the above results show that the proposed method in
this paper is robust enough regarding the characterization of

a 3D rough fractal surface from backscattered radar data.

IV. CONCLUSIONS

In this paper, a method for 3D rough fractal surface
characterization from backscattered radar data is presented.
Namely, in this paper we are using the Kirchhoff
approximation [11] in order to obtain simulation results for
the backscattered radar signal amplitude as a function of
radar frequency, therefore a ‘spectral method’ [3].
Regarding the modeling of the rough fractal surface, here a
recently introduced novel 3D Weierstrass Mandelbrot fractal
function is used [10], modified by our research group in
order to be appropriate for the current investigation.

Based on the simulation results, provided in Section III
above, we observed that the average slope between the main
lobe and the adjacent left and right side lobes increases with
increasing fractal dimension (roughness) of the rough fractal
surface, as in Fig. 5 above. Therefore, a characterization of
the rough surface (estimation of its fractal dimension) from
the spectral backscattered radar data described above is
possible. In this way, similar results obtained recently by our
research group for a 2D modeling of fractal rough surface
[3], [13] were obtained here for the more realistic 3D
representation of fractal rough surfaces.

In order that the above rough surface characterization is
possible, enough radar bandwidth is needed, as it can be
seen in Table I. The latter effect may be counterbalanced, to
some extent, by increased surface ‘patch size’ (i.e. by
increased radar beamwidth or radar altitude of surface
observation).

V. FUTURE RESEARCH

In our future research we intend to concentrate in the
following aspects: (i) effect of SNR in our proposed method
of rough surface characterization. Note that this aspect has
already been investigated in a very successful manner in the
case of 2D rough surface modelling [13]. (ii) sea state
characterization by using measured SAR radar data, e.g. for
a ‘stepped-frequency’ (SF) SAR radar waveform, as that
used in Refs. [12], [14].
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