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Introduction

Problems of automatic control system (ACS)
synthesis and optimization are solved using variational
calculus, maximum principle, dynamic programming and
other classical methods of ACS synthesis. Problems of
optimal control are often solved using variational calculus
methods which are simple and convenient according to the
authors of the monograph [1]. However the indicated
methods are not universal; it is difficult to apply them
when the object is described by logic operators and
impossible when mathematical model does not exist.

The objective of the present study is as follows: by
application of search optimization methods [2] and system
synthesis methods [3] to create agorithmic variational
calculus methods that would alow to solve variationa
calculus problems in cases when mathematical model
(functional) of the object is not set by analytic method, and
it is impossible to apply classica synthesis methods
(including variational calculus). This work is a sequel to
the article [4].

Problems of variational calculus with unfixed

trajectory ends

For problems with unfixed marginal trgjectory ends
(%, ¥o) and (x.,y,) they can change their location and can
be located in any points of given lines or surfaces
y(%) € (X), y(x)ec(x). (1)
An extremal needs to be found that would give
minimum to the functional
X
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Euler's eguation is applied for solving the problem
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Integration constants and particular solution can be
found from the equations (4) and (5), which are known as
transversal conditions.

Tasks with the unfixed primary or final end of the
trajectory are also possible. In such case, the tasks are
solved by application of one of the (4) and (5) conditions.
It must be observed, that solution of the task by application
of Eiler's equation (3) on the conditions (4), (5) requires
analytical expression of the function f(x,y,y).Moreover,
this function must have partia fluxions, which are
continuous up to the second row on the basis of all
variables.

where fy =

Extremalswith corner points

It is estimated [1], that extremal of the functional (2)
isa smooth curveif f(x,y,y) isa continuous function of

its arguments which has second row fluxion that is not
equa to zero, i.e. f, #0. The functional can reach

extremum when extremal has corners if in separate points
f, =0.
It is obvious that function y(x) which provides

extremum to the functional must meet Euler's equation
between the corner points. Let function y(x) be an

extremal with one corner in point x which is located
between the points x, and x, . The functional

I=[FO0y b Y06) = Yor Y(X) =Y, (6)
X
can be expressed as a sum of integrals

X X
J=J,+7, :j f(xy, y)dx+j fxy,y)dx. (7
X

X
The variation of the functional (7) can be expressed as the
sum of variations 6J; and 6J,.
Function y(x) is extremal in each interval [x,,x;]
and [x,%] and meets the requirements of Euler's
equation (3). Consequently
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The following conditions were obtained from (8):

y
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Conditions (9) (Veierstrass-Erdman conditions)
together with Euler’s equation enable finding the extremal
of the functional (6) in such cases when earlier stated
requirements for the function f(x,y,y) are met.
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Algorithmic M ethods of Variational Calculus

We shall analyze the solution of problem (1), (2) by
application of methods of agorithmic system synthesis [3,
4].

Within the interval x, < x<x when x,=0, using
discreet values of function y(x)

y[iT], i=0,..,N-1, (10)
ak —dimensional vector zisintroduced
z={z =y{0], zZ, = y[1T],...,
Z.,=Y{(N-2)T], z =Y{(N-DT]}, (11

wherek = N, T =t; /N isasampling period.
A step function or another function made out of
linear intervalsis formed using the components of vector z

Y=Y(Z,X), X SX<X. (12

Then avariational calculus problem (1), (2) becomes
a search optimization problem. An extremal y(x) has to

be found that would secure functional

3@ =IY(zN], % <x<x (13)
minimum with respect to marginal conditions
y(%) € o(x), y(x)ec(x). (14)

There is a set of extremals meeting various marginal
conditions and the task (13), (14) can be solved eg. m

times. In this way m local extremums Z,...,Z, are found

during the search process. A vector among local
extremums is selected which gives minimal value the
functional J(2)

Z,,=agminl(Z), j=1..,m. (15)

It is obvious that when m— oo a probability that
isaglobal minimum Z" istending toward one:

-2 v}

where v, - given error of optimization.

Solution process of task (13), (14) can be automated
using two optimizers. One to optimize the shape of curve
y(X) another to search for optimal margina conditions

(m. c).
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Fig. 1. Scheme of solution for problem with unfixed trajectory
ends

Variational calculus problem (13), (14) is solved
applying the methods of simplex search [2] according to
the schemein Fig. 1.

We shall analyze the solution of task (6) applying
algorithmic methods of system synthesis[3, 4].

We can expect to have a problem with extremal
which has corner points if preliminary investigation shows
that in separate points f, =0.

We will formulate a task for search optimization.

Within the interval x, < x<x when x, =0, using
discreet values of function y(x) (10) a k — dimensional
vector (11) isintroduced. A step function is formed using
the components of vector z

y=y(z,x), 0<x<X,.

Problem of variational calculus (6) is written in the
form of search optimization. An extremal y(Xx) has to be

found that would secure functional
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J(2)=J[y(zX)], 0< X< X, (18)
minimum with respect to marginal conditions
Y0O6) = Yo: YO&) =Y, - 19

Variational calculus problem (18), (19) is solved
applying the methods of simplex search [2] according to
the schemein Fig. 2.
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Fig. 2. Scheme for search of extremal with corner points

Examples of variational calculus problem solutions
following algorithmic methods

Problem No. 1. A curve connecting two points A and
B must be found such that diding point mass will reach the
end of curve at shortest time (friction is ignored). Starting
point A isfixed, end point B can move vertically. Thisisa
classical problem of variational calculus the solution of
which is a curve called brachistochrone (from Greek
brachistos , the shortest” and chronos “time”).
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Fig 3. A curve of problem No. 1

According to [1] this tas kis formulated in the
following way: a function y(x) needs to be found that

would secure minimum to the functional

X 1+ y2
I(y) = [Y=dx. (20)
o /20y
Marginal conditions are given by:
y(0)=0, x =1. (21)

Problem (20), (21) is solved following the technique
(10)-(16) and the scheme of Fig. 1. A one-dimensiona
simplex is employed in the line x =1 for the search of

optimal marginal conditions. For the search of curve shape
we choose that N=51 then

tf
T=—=0,02.
N

A 51-gona simplex is employed in 50-dimensional
space of variables for the search of curve shape. Optimal
marginal conditions Y, (x,) and corresponding curve y(t) is
searched using simplex search method of forbidden
backward step. The result of problem solution is extremal
y(xX) found by agorithmic method. Fig. 4 shows the

extremal y(x) found by algorithmic method (curve No. 1),

theoretical extremal (curve No. 2) and several extremals
found during search process when not optimal marginal
conditions are set (curves No. 3-6), the values of functional
are also presented for different marginal conditions.
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Fig 4. A chart of extremals of problem No. 1
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Problem No. 2. A curve needs to be found that would
give minimum to the functional

2
J= j y2(1-y)%dx . (22)
0
Marginal conditions are given by:
y(0)=0, y(2)=1. (23)

Problem (22), (23) is solved following the technique
(17)-(19) and the scheme of Fig. 2. We choose that
N =21 then

tf

T=—=01.

N (24)

A 21-gona simplex is employed in 20-dimensional
space of variables for the task solution. The extremal y(x)
is searched using simplex search method of forbidden
backward step. The result of problem solution is extremal
y(x) found by agorithmic method. Fig. 5 shows the
extremal y(x) found by algorithmic method (curve No. 1)

and theoretical extremal (curve No. 2). An extremal has a
corner inpoint y(2)=0.
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Fig. 5. A chart of extremals of problem No. 2
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Problem No. 3. A curve needs to be found that would
give minimum to the functional

2
3= [(@-y)@+y)dx. (25)
0
Marginal conditions are given by:
y(0)=1, y(2)=0. (26)

Problem (25), (26) is solved following the technique
(17)-(19) and the scheme of Fig. 2. We choose that
N =21 then

L

T=—=01. 27
N (27)

A 21-gona simplex is employed in 20-dimensional
space of variables for the task solution. The extremal y(x)

is searched using simplex search method of forbidden
backward step. The result of problem solution is extremal
y(x) found by agorithmic method. Fig. 6 shows the

extremal y(x) found by algorithmic method (curve No. 1)



and theoretical extremal (curve No. 2). An extrema hasa  search algorithms. Extremals can be found during search
corner in point y(1) =1. optimization (including extremals with corner points) even
in such cases when mathematical model of the object
(functional) is described by logic operators, or its
analytical expression is unknown, i.e. in cases when
classical variational calculus methods are impossible to

apply.
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Algorithmic methods of variational calculus are
created that allow solving various variational calculus
problems with unfixed trajectory ends by applying simplex

A. Dambrauskas, V. Rinkevi¢ius. Algorithmic Methods of Variational Calculus // Electronics and Electrical Engineering. —
Kaunas: Technologija, 2008. — No. 5(85). — P. 25-28.

In problems of automatic control system optimization it is required to determine the structure of controller, parameters or the law of
reference value variation which would guarantee the required quality of control. Methods of variational calculus are often used to solve
problems of optimal control when control objects are simple and have mathematical models. But these methods are not universal, it is
difficult to use them when objects are defined by logical operators and it is impossible to use them when mathematical model does not
exist. The aim of the present work is as follows: by application of optimization methods to create algorithmic variational calculus
methods that would alow solving variationa calculus problems in cases when mathematical model (functional) of the object is not set
by analytical method and it isimpossible to apply classical methods. The technique of algorithmic variational calculus method is set in
the article, problems of variationa calculus with unfixed trajectory ends are formulated in the form of search optimization problems,
methods of finding extremals with corners are indicated and examples of solutions of variational caculus problems are presented. 111. 6,
bibl. 4 (in Lithuanian; summaries in English, Russian and Lithuanian).

A. JlamOpayckac, B. PuHKeBHYIOC. AJIFOPUTMHYECKHE MeTOAbI BAaPHALMOHHOIO WcunciaeHust // DieKTpoHHKa M
nekTporexuuka. — Kaynac: TexHosnorus, 2008. — Ne 5(85) — C. 25-28.

IIpu pelueHHH 3amad ONTHMH3ALMHM ABTOMATHYECKHX CHCTEM YIPABICHHS HEOOXOAMMO YCTaHOBHTH CTPYKTYPY M HapaMeTphI
YCTPOMCTBA yNpaBJCHUs, MM 3aKOH YIPABISIOLIETO BO3JICHCTBHS, KOTOpPbIE OoOecreyrmno Obl HEOOXOIMMOE KadeCTBO YIPABIICHHS.
Korga oObeKThl yIpaBlieHHs MPOCThIE M MMEIT MaTEMaTH4YECKHEe MOJENIH, YacTO Ul PEIICHHs 3a]a4 ONTHMAJIbHOTO YIPaBJICHHS
MPUMEHSFOT METO/bl BapHAIIMOHHOTO HCYHUCICHHUs. VI BCE e yKa3aHHBIE METOJbI HE SIBISIFOTCS YHHBEPCAIBHBIMH, UX HNPHMEHCHHE
3aTPYIHUTENIBHO, KOTJa OOBEKT OMMCAH JIOTMYECKUMH OIlepaTopaMH M HEBO3MOXKHO, KOIJJa MaTeMaTHYeCKOil MoJeiu BOOOIIE HeT.
Llenb 3T0# pabOTHI, MCIONB3YS METOABI MOMCKOBOH ONTHMH3ALMHU, CO3IaTh aIrOPUTMUYECKHE METOIbI BAPHALMOHHOTO HCUHCICHHUS,
[O3BOJISIIOIINE PEIlaTh 3a4a4i BapHALMOHHOTO MCYHMCICHHUS B TEX CIYYHsX, KOTJa MareMaTHuecKas MOAeab 00bekTa ((yHKIMOHAI)
aHATUTHYECKON (opMe He 3amaHa, KOrAa MPUMEHEHHE KIACCHYCCKUX METOIOB BApHALMOHHOTO HCYHMCICHHS HEBO3MOXHA. B crarbe
M37I0’KEHA ANTOPUTMHUYECKas METOAMKA BAPHALMOHHOTO HCUHCICHHS, C(OPMYIMPOBAHBI 3aJa4d BapHUALMOHHOTO HMCUYMCICHHS C
MOABIKHBIMH KOHLIAMH TPAeKTOpHU B (opMe 3a7ad MOMCKOBOH ONTHMHU3ALMHU, YKa3aHbl CIIOCOOBI TIOMCKA 3KCTPEMalb C H3JIOMaMH,
MPUBEJICHBI IPUMEPBI PELICHUS 33/1a4 BAPUALMOHHOTO HCUHciieHus. M. 6, 6ubi. 4 (Ha aHIIMICKOM s13bIKe; pedepaThl Ha aHTITHHCKOM,
PYCCKOM H JIATOBCKOM $I3.).

A. Dambrauskas, V. Rinkevié¢ius. Algoritminiai variacinio skai¢iavimo metodai // Elektronika ir elektrotechnika. — Kaunas:
Technologija, 2008. — Nr. 5(85). — P. 25-28.

Sprendziant automatiniy valdymo sistemy optimizavimo uzdavinius reikia nustatyti valdymo jtaiso struktira, parametrus arba
valdymo poveikio kitimo désnj, kurie uztikrinty reikiama valdymo kokybe. Kai valdymo objektai yra paprasti ir turi matematinius
modelius, optimalaus valdymo uzdaviniams spresti daznai naudojami variacinio skai¢iavimo metodai. Tagiau Sie metodai néra
universaliis, juos taikyti keblu, kai objektas aprasytas loginiais operatoriais, ir nejmanoma, kai matematinio modelio i3 viso néra. Sio
darbo tikslas, taikant optimizavimo metodus, kurti algoritminius variacinio skaic¢iavimo metodus, leidziancius spresti variacinio
skai¢iavimo uzdavinius tais atvejais, kai objekto matematinis modelis (funkcionalas) anditiniu badu nenurodytas, kai klasikiniy
skai¢iavimo metody taikyti nejmanoma. Straipsnyje isdéstyta algoritminé variacinio skai¢iavimo metodika, suformuluoti variacinio
skaiciavimo uzdaviniai su nefiksuotais trajektorijos galais paieskinio optimizavimo uzdaviniy forma, nurodyti ekstremaliy su laziais
radimo bidai, pateikta variacinio skai¢iavimo uzdaviniu sprendimo pavyzdziy. II. 6, bibl. 4 (lietuviy kalba; santraukos angly, rusy ir
lietuviy k.).
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