A Method for Exact Error Probability Determination of Nonuniform Signaling For Gaussian Channels

Z. H. Peric
Faculty of Electronic Engineering, University of Nis Beogradska 14, 18 000 Nis, Serbia

S. M. Bogosavljevic
"Telecom Serbia", Nis Vozdova 13 a, 18000 Nis, Serbia

Introduction

In the conventional approach to data transmission, each point in a given constellation is equally likely to be transmitted. Although this approach gives the maximal bit rate for a given constellation size, it does not take into account the energy cost of the various constellation points. The idea of choosing constellation points with a nonuniform distribution was explored in [1]. The nonuniform signaling is more general for consideration and has better performance than the equiprobable transmission. The optimal nonuniform signaling was considered in [1], but the error probability was evaluated for great signal-to-noise ratios (SNR) values and medium numbers of the nearest neighbours.

The performance of specific signal constellations in digital communications problems is often described through use of the union bound, the minimum distance bound and the closest neighboring method [2]. A new upper bound was presented in B. Hughes’ paper [3]. This bound can be applied to any digital set and it is always better than union bound and minimum distance bound. An asymptotically tight lower bound was considered in P. F. Swaszek’s paper [4].

The calculations in previous mentioned papers are based on the equiprobable transmission and there are more or little close to the exact error probability.

A simple method for exact error probability determination of nonuniform signal constellations in two dimensions (2D) for Gaussian channels is presented in this paper. The proposed method will be illustrated on the example of iterative polar quantization [5] and comparison among this method and some of previous mentioned methods will be done. The exact error probability determination make possible the exact nonuniform signal constellation analysis for any SNR value. The proposed method is simpler than approximate methods presented in [3] and [4], and it is more easy for implementation in 2D space.

The aim of this paper is not in signal constellation optimization, but in approach to exact error probability determination. Therefore, the analysis is done for quantizations obtained using the polar quantizations that minimize the mean-squared error. These quantizations are useful for implementation on circle symmetrical sources (for example Gaussian source).

A Method for exact error probability determination of 2D signal constellations

Consider the problem of detecting one of L nonequiprobable signals in additive white Gaussian noise. For a 2D signal constellation representation, the observed data are

$$r = O_{ij} + n,$$

where O_{ij} is the signal coordinate vector and $n = (x, y)$ consists of two independent Gaussian variables, each with zero-mean and variance σ_n^2.

The error probability of receiver can be written as a sum of error probabilities conditioned on the signal transmitted

$$P_e = \sum_{i=1}^{L_i} \sum_{j=1}^{L_i} P_e(O_{ij}) P(O_{ij}),$$

where $P(O_{ij}) = \int_{\theta_{ij}}^{\theta_{ij+1}} \int_{\phi_{ij}}^{\phi_{ij+1}} p(r, \phi) dr d\phi$ is the probability of observed point with $p(r, \phi) = \frac{r}{2\pi \sigma^2} e^{-\frac{r^2}{2\sigma^2}}$ being the joint probability density function of the noise n in polar coordinates ($x = r \cos \phi$ and $y = r \sin \phi$) and $P_e(O_{ij})$ is the conditional error probability. L_r is the number of levels, L_i is the number of points on i-th level, θ_{ij} is the j-th decision phase on the i-th level, ϕ_{ij} is the j-th reconstruction phase on the i-th level (see Fig. 1.)

Since the region of integration is usually not trivial (see Fig. 2) bounds on the error probability are desirable. The most common approach to bounding P_e is to upper-bound each $P_e(O_{ij})$ using union bound [2]...
where d_m is defined below. ϕ_k is the angle between the polar axis and the segment of a line $O_i P_k$, β_k is the angle between the polar axis and the segment of a line $O_i O_j^{(k)}$ (Fig. 2), $L_d(O_i)$ is the number of nearest neighbours having influence on decision region.

We can compute error probability for each constellation point if we determine the nearest neighbours and the decision regions around each point. Decision regions are irregular hexagons. Hexagon’s sides are obtained at the straight lines crossing, orthogonally drown on line segments which connect the point under observation O_i with the nearest neighbouring points $O_j^{(k)}$ (see Fig. 2). Each of the straight lines are drown at the distance measuring $d_m(O_i, O_j^{(k)})/2$ from the observed point O_i, where d_m is a modified Euclidean distance

$$d_m(O_i, O_j^{(k)}) = d(O_i, O_j^{(k)})/2$$

where $d(O_i, O_j^{(k)})$ is Euclidean distance between O_i and $O_j^{(k)}$ points, σ_n^2 is average noise power, $P(O_i)$, as we seen, is the probability of observed point, $P(O_j^{(k)})$ is the probability of the neighbouring point. Modified Euclidean distance is derived starting from MAP principle of detection.

Now, the error probability can be obtained from the expression (1). So, the influence of any neighbour depends on the angle $(\phi_k + \phi)\), mutual Euclidean distance and mutual probabilities between points.

The proposed method can be applied for any nonuniform signal constellation and it is illustrated on the example of restricted iterative polar quantization (IPQ) [5].
IPQ of Gaussian source with decision regions for transmission through Gaussian channel (L=256) is shown in Fig. 3.

![Fig. 3. The signal constellation with 256 points and decision regions](image)

The error probability computed for signal constellation which is obtained by a nonuniform source iterative polar quantization as well as error probabilities per symbols for uniform signal constellation with 256 and 64 points are shown in Fig. 4.

![Fig. 4. The error probability per symbol for uniform and nonuniform signal constellation with 256 and 64 points. (i) uniform signal constellation for 256 points. (ii) nonuniform signal constellation for 256 points. (iii) uniform signal constellation for 64 points. (iv) nonuniform signal constellation for 64 points](image)

The error probability per symbol for constellation obtained using product polar quantization (PPQ) [6] as well as iterative polar quantization (IPQ) [5] is shown in Figs. 5 and 6 for 64 and 256 constellation points, respectively.

![Fig. 5. Error probability per symbol for constellations obtained using PPQ and IPQ](image)

![Fig. 6. Error probability per symbol for constellations obtained using PPQ and IPQ](image)

Conclusion

The simple method for exact error probability determination of nonuniform signaling in two dimensions for Gaussian channel is presented in this paper. The error probability per symbol both for uniform constellations and nonuniform signal constellations obtained using different polar quantization methods with 256 and 64 points are accurately determined as illustration.

References

Pateikiamas paprastas tikslios paklaidos tikimybės įvertinimo dvimačiame gausiniame kanale metodas. Paklaidos tikimybė randama naudojant maksimalios aposteorinės tikimybės nustatymo principą. Il.6, bibl.7 (anglų kalba; santraukos lietuvių, anglų ir rusų k.).

A simple method for exact error probability determination of nonuniform signaling in two dimensions for Gaussian channel is presented in this paper. The error probability is determined using maximal a posteriori probability (MAP) detection principle. Ill. 6, bibl. 7 (in English; summaries in Lithuanian, English, Russian).

Представлен простой метод определения точной вероятности погрешности в гаусовых каналах. Вероятности погрешности рассчитываются используя принцип определения опостервой вероятности. Ил. 6, библ. 7 (на английском языке; рефераты на литовском, английском и русском яз.).