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Introduction

In the conventional approach to data transmission ,
each point in a given constellation is equally likely to be
transmitted. Although this approach gives the maximal bit
rate for a given constellation size, it does not take into
account the energy cost of the various constellation points.
The idea of choosing constellation points with a
nonequiprobable distribution was explored in [1]. The
nonuniform signaling is more general for consideration and
has better performance than the equiprobable transmission.
The optimal nonuniform signaling was considered in [1],
but the error probability was evaluated for great signal-to-
noise ratios (SNR) values and medium numbers of the
nearest neighbours.

The performance of specific signal constellations in
digital communications problems is often described
through use of the union bound, the minimum distance
bound and the closest neighboring method [2]. A new
upper bound was presented in B. Hughes’ paper [3]. This
bound can be applied to any digital set and it is always
better than union bound and minimum distance bound. An
asymptotically tight lower bound was considered in P. F.
Swaszek’s paper [4].

The calculations in previous mentioned papers are
based on the equiprobable transmission and there are more
or little close to the exact error probability.

A simple method for exact error probability
determination of nonuniform signaling in two dimensions
(2D) for Gaussian channels is presented in this paper. The
proposed method will be illustrated on the example of
iterative polar quantization [5] and comparison among this
method and some of previous mentioned methods will be
done. The exact error probability determination make
possible the exact nonuniform signal constellation analysis
for any SNR value. The proposed method is simpler than
approximate methods presented in [3] and [4], and it is
more easy for implementation in 2D space.

The aim of this paper is not in signal constellation
optimization, but in approach to exact error probability
determination. Therefore, the analysis is done for
quantizations obtained using the polar quantizations that

minimize the mean-squared error. These quantizations are
useful for implementation on circle symmetrical sources
(for example Gaussian source).

A Method for exact error probability determination of
2D signal constellations

Consider the problem of detecting one of L
nonequiprobable signals in additive white Gaussian noise.
For a 2D signal constellation representation , the observed
date are

r=0;+n,

where Oj is the signal coordinate vector and n=(x, y)
consists of two independent Gaussian variables, each with
zero-mean and variance G,”.

The error probability of receiver can be written as a
sum of error probabilities conditioned on the signal
transmitted
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joint probability density function of the noise n in polar
coordinates (x =7cos¢ and y=rsing) and P,(Oj) is the
conditional error probability. L, is the number of levels, L;

is the number of points on i-th level, ; is the j-th decision

phase on the i-th level, ¢; is the j-th reconstruction phase
on the i-th level (see Fig. 1.)

Since the region of integration is usually not trivial
(see Fig. 2) bounds on the error probability are desirable.
The most common approach to bounding P, is to upper-
bound each P.(Oj) using union bound [2]



L m

LV
POH< X Y O

m=l, m#i [=1,1#]

d(0y,0,)

- )

2

n

1 0 _ 2/2 )
where Q(x)=——[e™” '“dy and d(0;,0,,;) is
[ b

T X
Euclidean distance between point O;j and Oy,

Tit]

polar axis

Fig .1. Quantization cell of representation point Oj;

The Hughes’ upper bound is easy to calculate, can be
applied to any signal constellation and is always better than
union bound and minimum distance bound [3]
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and 6 is determined from B,(6y,0) =1/ Ny (O;) , with

Nmin(Ojy) being the number of the nearest neighbours for
observed point Oy. The function G(z, p) is defined as
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The Swaszek’s lower bound is an asymptotically tight
lower bound useful for small to medium values of SNR [4]
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where 2w is the slab width as defined in [4].
Introduction of the polar coordinates (x=rcos¢,

y=rsing) allow us to obtain a simple expression for

exact error probability in 2D space. Conditional error
probability in polar coordinates, starting from Fig. 2, can

be determined as follows
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where d,, is defined bellow. ¢, is the angle between the
polar axis and the segment of a line O;F;, f; is the

angle between the polar axis and the segment of a line
O,-jOl_-j(k) (Fig. 2), L,(O;) is the number of nearest

neighbours having influence on decision region.

We can compute error probability for each
constellation point if we determine the nearest neighbours
and the decision regions around each point. Decision
regions are irregular hexagons. Hexagon’s sides are
obtained at the straight lines crossing, ortogonally drown
on line segments which connect the point under
observation Oj;; with the nearest neighbouring points Oij(k)
(see Fig. 2). Each of the straight lines are drown at the
distance measuring d,, (OZ-j,Ol-j(k))/ 2 from the observed

point O;;, where d,, is a modified Euclidean distance
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d(o Oi]-(k)) is Euclidean distance between O, and O,

ij >
points, o-,% is average noise power, P(0Oj;), as we seen, s

the probability of observed point, P(Oij(k))is the

probability of the neighbouring point. Modified Euclidean
distance is derived starting from MAP principle of
detection.

Now, the error probability can be obtained from the
expression (1). So, the influence of any neighbour depends
on the angle (¢, —¢; ), mutual Euclidean distance and

mutual probabilities between points.

The proposed method can be applied for any
nonuniform signal constellation and it is illustrated on the
example of restricted iterative polar quantization (IPQ) [5].

Oij(k)

x=d,/ [2 cos(B,—9)]

Fig. 2. A typical
determination

decision region for error probability

The restricted iterative polar quantization method
presented in the paper [5] consists of a nonuniform scalar
quantization of amplitude r and a wuniform scalar
quantization of phase ¢ and can be applied for any number
of points. The signal constellation which is obtained after



IPQ of Gaussian source with decision regions for
transmission through Gaussian channel (L=256) is shown
in Fig. 3.
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Fig. 3. The signal constellation with 256 points and decision
regions

The error probability computed for signal
constellation which is obtained by a nonuniform source
iterative polar quantization as well as error probabilities
per symbols for uniform signal constellation with 256 and
64 points are shown in Fig. 4.
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Fig. 4. The error probability per symbol for uniform and
nonuniform signal constellation with 256 and 64 points. (i)
uniform signal constellation for 256 points.(ii) nonuniform signal
constellation for 256 points. (iii) uniform signal constellation for
64 points. (iv) nonuniform signal constellation for 64 points
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- Constellation obtained using product polar quantization (PPQ)
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Fig. 5. Error probability per symbol for constellations obtained
using PPQ and IPQ
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Fig. 6. Error probability per symbol for constellations obtained
using PPQ and IPQ

The error probability per symbol for constellation
obtained using product polar quantization (PPQ) [6] as
well as iterative polar quantization (IPQ) [5] is shown in
Figs. 5 and 6 for 64 and 256 constellation points,
respectively.

Conclusion

The simple method for exact error probability
determination of nonuniform signaling in two dimensions
for Gaussian channel is presented in this paper. The error
probability per symbol both for uniform constellations and
nonuniform signal constellations obtained using different
polar quantization methods with 256 and 64 points are
accurately determined as illustration.
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Pateikiamas paprastas tikslios paklaidos tikimybés jvertinimo dvimaciame gausiniame kanale metodas. Paklaidos tikimybé randama
naudojant maksimalios aposteorinés tikimybés nustatymo principa. 11.6, bibl.7 (angly kalba; santraukos lietuviy, angly ir rusy k.).
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A simple method for exact error probability determination of nonuniform signaling in two dimensions for Gaussian channel is
presented in this paper. The error probability is determined using maximal aposteriori probability (MAP) detection principle. Ill. 6, bibl.
7 (in English; summaries in Lithuanian, English, Russian).

3.I'. Iepuu, C.M. BorocasibeBud. MeTo/ OLeHKH TOYHOIi BEPOATHOCTH NMOTPELIHOCTH B rayCOBBIX KaHAJIAX // DJIeKTPOHHKA H
anekTpoTexHuka. - Kaynac: Texnosorus.- 2003.- Ne 7(49). — C. 9-12.

[Ipencrasien mpocToif METOA OIpeAEIeHNs] TOYHOH BEPOATHOCTU MOIPEIIHOCTH B I'ayCOBBIX KaHalax. BeposTHOCTU MOrpeIHocTH
PacCUUTBIBAIOTCS CIIOJIB3Ysl PUHIIHIT OIIPE/ICIICHUs] ONIOCTEOPHOM BepOosITHOCTH. M. 6, 6ubi. 7 (Ha aHITIMICKOM si3bIKe; pedepaThl Ha
JIUTOBCKOM, AHTTIMHCKOM U PYCCKOM f3.).
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