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Introduction 

A long-standing fundamental issue in nonlinear time 
series analysis is to determine whether a complex time 
series is regular, deterministically chaotic, or random. An 
accurate identification of the dynamics underlying a 
complex time series, is of crucial importance in understan-
ding the corresponding physical process, and in turn affects 
the subsequent model development. A steady stream of 
efforts has been made, and a number of effective methods 
have been proposed (also in the latest years [1]-[3]) to 
tackle this difficult problem. The vast majority of these 
methods are based on attractor reconstruction from time 
series and such characteristics as largest Lyapunov expo-
nent, K2 entropy, and correlation dimension calculation 
[4], [5]. However, the existence of noise, which may mask 
or mimic the deterministic structure of the time series, can 
lead to spurious results [6]. Finally, most of these ap-
proaches depend heavily on a good reconstruction of the 
phase-space geometry of the dynamical system. Since 
there is no unique way to choose the embedding dimension 
and the time lag, the accuracy of such methods is hard to 
guarantee [6], [7]. For a certain class of time series this 
task is simpler. Zhang et al [6] have proposed a different 
method to detect deterministic structure from a pseudope-
riodic time series. By using the correlation coefficient as a 
measure of the distance between cycles, they were ex-
empted from the phase-space reconstruction and construct 
a hierarchy of pseudocycle series. Appropriate statistics are 
then applied to reveal the temporal and spatial correlation 
encoded in this hierarchy of the pseudocycle series, which 
allows for a reliable detection of determinism and chaos in 
the original time series. The algorithm developed here is 
also based on the concept of the using correlation coeffi-
cient as a measure of the distance between cycles, but the 
execution of the idea in this paper is different. We present 
the straightforward and noisy resistant algorithm to detect-
ing chaos in pseudoperiodic time series by using the corre-
lation coefficient as a measure of the distance between 
cycles, but without building a hierarchy of pseudocycle 
series. Proposed algorithm is similar to Rosenstein algo-
rithm [8] for largest Lyapunov exponent calculating, but 

without reconstructing of the attractor dynamics. Same as 
in work [6], throughout the paper, we use the x component 
of the well-known Rossler system and an experimental 
laser dataset for illustration, both of which are chaotic and 
contain obvious periodic component. The laser dataset is 
the record of the output power of the NH3 laser available in 
Santa Fe Competition (Data Set A). 

Description of the algorithm 

1) Given a pseudoperiodic time series 
{ } { }Ni xxxX ,,, 21 L=  of length N, one can define m-lengths 

sequence cycles ( ) ( ) { }11 ,,, −++= miii
m xxxi LC . These cycles 

represent m consecutive x values, commencing with the ith 
point and m is defined approximately as one period Tp of 
pseudoperiodic time series. For a given ( ) ( )im

dp TTmNi −

C : 
= − + −12/,,2,1 L

ij

 (Td is explained below) 

the correlation coefficient ρ  as the distance between each 

pair of cycles C(i) and C(j) for pTij ≥−

ij

 is calculated. 
The correlation coefficient characterizes the similarity 
between cycle C(i) and C(j). The larger the correlation 
coefficient, the higher the level of similarity. Considering 
the continuity and smoothness of the vector fields of de-
terministic systems, two cycles with a larger ρ  will also 
be close in the phase space, i. e., for the relation between 
cycles describing, the correlation coefficient can be used 
equivalently as the phase-space distance [6]. 

2) The search of most similar cycles is executed us-
ing a sliding overlapping window of constant length 

2/NT =  for all i. For a given i the values of lag j changes 
from 1+Tp to N/2+Tp. The constraint pTij ≥−

mi

 is neces-
sary to exclude temporally correlated points. 

3) The algorithm locates most similar ijth pair of cy-
cles (with maximum correlation coefficient ρ ) of each 
point i. Like Rosenstein algorithm [8], the averaged diver-
gence between two nearby cycles ( )kmρ  at time steps k 
( dTk ,,2,1 L= ) is calculated 

 53

mailto:k.pukenas@lkka.lt


 

( ) ( )k
t

k imm ρρ ln1
Δ

= , (1) 

where L  denotes the average over all values of i, tΔ  – 
the sampling period of the time series. This process of 
averaging is the key to calculating divergence between two 
nearby cycles in presence of noise 

4) For chaotic systems, the distance between two 
nearby cycles will increase exponentially over time due to 
the very nature of sensitivity to initial conditions. There-
fore, the correlation between two nearby cycles, which 
decreases smoothly and monotonously with the distance 
between cycles [6], is also expected to drop exponentially 
with the step k. The semilogarithmic plot ( )( km )ρln  ~ k (or 
versus time ) thus appears to be a line nearby 
straight, whose slope is actually related to the largest 
Lyapunov exponent. The larger the 

tkt Δ⋅=

( ) kkm ΔΔ /ln ρ , the 

higher the level of chaos. So we can use ( ) kkm ΔΔ /ln ρ  as 
an indicator of chaos. Since ( )kmρ  is close to 1, 

( )( ) ( ) 1ln −≈ kk mm ρρ  and we can estimate slope as 

( ) kkm ΔΔ /ρ . The curve saturates at longer times and  
is defined normally only for the slope region. 

dT

Results 

We consider the influence of different types of noise 
on the measure we have defined. In the case of additive 
noise, i.e., measurement or instrumentation noise, all the 
pair-wise correlation coefficient ( )kimρ  will decrease. 
However, since the additive noise has no preference in 
influencing different cycles in the time series, ( )kimρ  will 
decrease roughly to the same extent, and their averaged 
divergence remains nearly unchanged. Fig. 1 shows a plot 
of ( )kmiρ  versus k (in each figure “<Divergence>” and 

“Iteration” are used to denote ( )kmiρ  and k, respectively) 
for the x component of the Rossler system with additive 
white Gaussian noise and colored noise (1/f noise) of dif-
ferent levels. The Rossler system is given by 

( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−+=

⋅+=

+−=

;

,

,

cxzb
dt
dz

yax
dt
dy

zy
dt
dx

 (2) 

with parameters a = 0.2, b = 0.2 and c = 5.7. 
Fig. 2 shows plot for experimental laser data set with 

additive white Gaussian noise and colored noise of differ-
ent levels. In Fig.1, 2, we can see that algorithm can suc-
cessfully detect chaos in the presence of additive white 
Gaussian and colored noise – the slope of lines indicates 
chaos for signal-noise ratio (SNR) up to 10 dB. For a peri-
odic sinusoidal signal with noise there are no such relations 
– the curves of ( )kmiρ  versus k remain flats for SNR up 
to 10 dB for white Gaussian noise and for colored noise 
(Fig.3). 

 

 
Fig. 1. Plot of <Divergence> versus iteration for the x component 
of the Rossler system (series length 1600) with additive Gaussian 
noise (upper panel) and additive colored noise (lower panel) of 
different levels 
 

In the case of additive white Gaussian noise the corre-
lation coefficients between different pairs of cycles are 
random and ( )kmiρ  will assume statistically the same 
value for different k, while for the colored noise, though 
cycles of the noisy periodic signal might appear “corre-
lated” due to the intrinsic correlation of the colored noise, 
we cannot find the scaling region in the plot of ( )kmiρ  ~ 

k, since ( )kmiρ  are roughly the same for k shorter than 
the decorrelation time of the noise [6]. 
 
Discussion and conclusions 

Through this approach, we can also discriminate be-
tween a low-dimensional chaotic signal and a periodic 
signal with noise. For low-dimensional pseudoperiodic 
chaotic signal with slow divergence between nearest 
neighbors it is possible to find the similarity between rela-
tive length cycles without a risk that first parts of two cy-
cles are close and the late parts could be far away from 
each other due to the influence of the positive Lyapunov 
exponents. Multiple averaging of distance measuring (cor-
relation coefficient) between two nearby relative long cy-
cles allows reducing the influence of random high-
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dimensional noise. For the chaotic time series, as we have 
seen, correlation coefficient ( )kmiρ  will decrease with k, 

and a scaling region is present in the plot of ( )kmiρln  ~ k 

or ( )kmiρ  ~ k. While for periodic signals with noise, 
there are no such relations. The algorithm performed rea-
sonably well for SNR up to 10 dB. 

 

 
Fig. 2. Plot of <Divergence> versus time for the experimental 
laser data set (series length 1000) with additive Gaussian noise 
(upper panel) and additive colored noise (lower panel) of differ-
ent levels 
 

The traditional universal algorithms for calculating 
largest Lyapunov exponents [8], [9] cannot reliable esti-
mate the largest Lyapunov exponents at noise level about 
SNR = 10 dB. 

In summary, we have proposed a noise resistant algo-
rithm to detect deterministic structure and chaos for time 
series data exhibiting strong pseudoperiodic behavior. The 
intrinsic correlation of the data set is studied on the scale of 
single cycles by using a similarity measure, thus phase-
space reconstruction can be avoided. Differently from 
method proposed by Zhang et al [6], where the pseudope-
riodic time series are segmented into consecutive (no over-
lapping) cycles according to the local minimum (or maxi-
mum), we use overlapping cycles similarly to phase-space 
vectors of reconstructed dynamics. This allows obtaining 
the results with relative small data sets. For example, in 
paper [6] 1596 cycles for the Rossler system and 1224 

cycles for laser data set are used to produce a wider scaling 
region for visual inspection. In our work the series length 
for Rossler system is 1600 and for laser data set – 1000 
points, i.e. comparable with series length for calculating 
largest Lyapunov exponents according to the Rosenstein 
method [8]. 

 

 
 

Fig. 3. Plot of <Divergence> versus time for a periodic sinusoidal 
signal (series length 1600) with additive Gaussian noise (upper 
panel) and additive colored noise (lower panel) of different levels  

In case of the high level of noise, algorithm can be 
successfully applied together with nonlinear phase-space 
reconstruction and the principal components analysis 
(PCA) – a well known technique, which can be used for 
pseudoperiodic signal prefiltering [10]. Starting from a 
time series { } { }Ni xxxX ,,, 21 L= , a matrix Y is construc-
ted by using the nonlinear embedding phase-space 
technique [4], [5] as follows: 

( ) ( )( )τ1, −+= ijxjiY ,   (3) 

where τmNj −= ,,1 L , , and m and mi ,,1 L= τ  are 
the reconstruction dimension and time delay, respectively. 
By applying PCA [5], [11] for noise reduction and choo-
sing only some eigenvectors with the largest eigenvalues 
of covariance matrix, the projected vectors are calculated 
with reduced dimension ml < . Finally, chaos is detected 
according to the introduced algorithm. If , two-
dimensional correlation coefficient between two matrices 

1>l
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of l-dimensional vectors is used as a measure of the distan-
ce between cycles instead of ordinary correlation coeffi-
cient. By using PCA as a primary noise reduction method, 
we have reliably detected chaos for noisy Rossler signal 
(with white Gaussian noise) with a proposed algorithm for 
SNR up to 6 dB (we chose , 10=m 1=τ  and ). 2=l
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A new straightforward algorithm is proposed to detect deterministic structure from a pseudoperiodic time series without embed-
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Предлагается новый простой алгоритм для обнаружения детерминистического начала в псевдопериодических временных 
рядах без реконструкции фазового пространства. В качестве меры дистанции между определенными циклами временного ряда 
применен коэффициент корреляции, на основании которого рассчитывается усредненная наклонная дивергенции между 
ближайшими (с наименьшей дистанцией) циклами, являющаяся индикатором детерминистического хаоса. Усредненная 
зависимость расхождения между ближайшими циклами от времени рассчитывается по методу Розенштейна для определения 
максимальной экспоненты Ляпунова. Показывается, что алгоритм способен надежно обнаруживать хаотическую природу 
смоделированных и экспериментальных псевдопериодических временных рядов при наличии шумов различного 
происхождения и при отношении сигнал-шум выше 10 дБ. Ил. 3, библ. 11 (на английском языке; рефераты на английском, 
русском и литовском яз.). 
 
 
K. Pukėnas, K. Muckus. Algoritmas deterministinio chaoso detekcijai pseudoperiodinėse laiko eilutėse // Elektronika ir elektro-
technika. – Kaunas: Technologija, 2007. – Nr. 8(80). – P. 53–56. 

Pateikiamas naujas paprastas deterministinio chaoso detekcijos pseudoperiodinėse laiko eilutėse algoritmas be fazinės erdvės re-
konstrukcijos. Naudojant koreliacijos koeficientą kaip distancijos tarp tam tikrų laiko eilutės ciklų matą, skaičiuojama suvidurkinta 
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