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Introduction

The analysis of guided wave structures constitutes a
major part of the microwave engineering. Several numerical
techniques have been used in the past to analyze the
transmission lines such as microstrip, slot, coplanar lines. The
Spectral domain method was the most preferred methods in
the past. Specially, when one deals with mutli-layered
structures or structures with conductors at several interfaces,
the Spectral Domain immitance approach based on
coordinate transformation is preferred the most. The
formulation of Green's function may be done almost by
inspection in many structures. On the whole, the Spectral
domain method is known to be efficient but is restricted in
general to the well-shaped structures. On the other hand, a
semi analytical method involving discretization such as the
Method of Lines (MOL), can be applied to a number of
practical but analytically complex structures. In addition,
unlike the Spectral domain method, it does not require any
basis function. Both the methods, however formulate the
eigenvalue problems thus deriving the Green's matrix, which
relates the current densities on the strip to the field.

The equivalence between the Spectral Domain
Approach (SDA) and the Method of Lines (MOL) [1]-[3]
show that the basic difference between the two lies with the
fact that in case of SDA each element of the Green's matrix is
a scalar but in the case of the MOL it is a vector. In other
words, MOL is a discrete form of SDA. Deriving the Green's
function in SDA is always an easy task especially when
Immitance approach [4] and [5] is being used. The spectral
domain Green's functions can be readily derived in the closed
form for most of the microstrip/fin line configurations and
using the equivalence criteria the MOL solution can directly
be derived from the SDA formulation by simple
manipulation. The motivation of the present study is to show
that the equivalence criteria can be utilized to derive the
Vectorized Green's function directly from the Green's
function in SDA. The Green's function so derived are then
used to determine the dispersion and current distribution on
the transmission line. In this case, the same basic
formulations can be used for both the purposes.

In the present paper, the Vectroized Green's functions
are first derived from the spectral domain Green's function
and then utilized to compute the dispersion characteristics
and the current distribution of the microstrip lines in simple
and suspended configurations. The analysis is presented for
triple layers of dielectric substrates. Finally, the dispersion
characteristics are compared with the SDA result. A very
good agreement between the two results is obtained.

The paper has been organized as follows: Section 2
discusses the formulation of the problem using the
equivalence criteria. Section 3 presents the numerical results
and finally section 4 gives the conclusion.

Formulation

For a two dimensional transmission line problem of the
type shown in Fig.1, the wave equation can be written as
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with k% = &’ wososr. @ “and @ " are the electric and
magnetic scalar potentials and, S is the propagation constant
along z. The SDA involves the Fourier transformation while
MOL deals with the discretization as shown in Fig.1. In both
SDA and MOL, the transformation is performed along the
(direction to convert a partial differential equation to a
normal one dimensional differential equation and for each
MOL and SDA it is represented as:
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where, [7] is the orthogonal transformation matrix and «,, is
the spectral term as in [7] and [8].
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Fig. 1. Enclosed microstrip configuration on a two-layer dielectric
substrate showing discretization in half space

This shows that the orthogonal transformation in MOL
is equivalent to discrete Fourier transform in SDA. Following
these equivalence criteria the spectral domain Green's
functions can be readily transformed to the Vectorized
Green's functions, which relates the field to the current
density functions. In vector form of the Green's matrix, each
element of the Green's function matrix is a sub matrix.
Assuming the harmonic time dependence exp(jwr) and the

propagation behavior in the z-direction according to

exp(—jot) the scalar potentials ¢ and (ph must satisfy the

Helmholtz equation given in (l). Performing the
discretization along x in MOL, equation (1) takes the form as

[Oe,n]

_ e
2 2

X

d? 5
5 Pe,h
a?y2

~(k? - p? )[1]][56,/1] =[0], (4

where, [Q,] and [Q;] are the symmetrical tridiagonal

matrices respectively written as

[Q =D,
[On]=

el[Dpl,

Dp1[De],

)
(6)

where [D,],[D;] - the bidiagonal matrices as given in [6].

To obtain an explicit solution of the discretized equation, one
needs to implement certain transformation procedure namely
the orthogonal transformation. [Q,] and [Q;] can be

transformed into the diagonal form as:
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where, [1,],
[Q.] and [Op].

eigenvector matrices of [0, ] and [Q;,].

[4,] - the diagonal eigenvalue matrices of

[7,] and [7,] are the corresponding

For a symmetrical structure, [1,] and [A,] are the
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same and equal to [5]°. Similarly, [@°] and [¢"] can be

transformed to [@¢] and [@"] as

[@en]=Ten [@en] ®)

After orthogonal transformation, equation (4) takes the
form as:
d? [62]
T Pe,h ~ Ty
dy h
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However in SDA equation (1) takes the form as:
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Comparing the above two equations it is clearly evident
that the equation (9) is nothing but a vectorized form of the
equation (10), where the spectral term «, a scalar, is

(k* _,32)[1]}5&11 =[0] (9)
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replaced by the term [5]2 / hxz , the vector eigen values.

Similar transformation is also obvious in the field equations
for each of the dielectric regions.

After suitable transformation, each element of the
dyadic spectral Green's function matrix in vectorlized form is
written as,

(6..1=IG1]. (11)
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where
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[Z o] and [Z ] can be obtained as follows for a three

layer substrate:
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hy, =d, hs =h, , hy =h; and h; are as defined in Fig. 2(¢):
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For a symmetrical structure along y as shown in Fig. 1,
only half of the structure is considered and the matrix of
eigen values, [0], and the corresponding matrices of eigen
vectors [T, ] and [T}, ] are given as in [6].

A close examinations of the above equations reveal that
the only difference between the Spectral domain Green's
function and the Green's function in MOL is that in the
Spectral domain case, derivative with respect to x is replaced
by the spectral term while in the case of the MOL they are
replaced by the matrix obtained from the finite difference
approximations of the derivatives.
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Fig. 2. Various microstrip configurations

The above space-coupled Green's function needs to be
back transformed so as to apply the final boundary
conditions. This is done with the help of the orthogonal
transformation matrices, i.e., the matrix of the eigen vectors.
A detailed explanation is given in [6], [7], [8] and, [9]. The
final matrix equation relating the current densities on the strip

to the field is written as:
Fx} _ {[Te NG NT.] (TG, ]}Fx
EZ TG T3 1] V2
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Next, only small number of discretization lines passing
through the strip are considered as the current is nonzero only
on the strip. The reduced matrix equation is obtained as,

m :[[Gzz] [sz]} {J}

0 red [ze] [Gxx] red JZ red
The final matrix equation is solved for the zero of the

determinant, which is a measure of the propagation

parameter. Finally, substituting for the value of the

propagation parameter, the unknown current densities on the
strip is determined.

] (37)
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Results and discussion

In this section, dispersion curve and the current
distribution are plotted for various microstrip configurations
as shown in Fig. 2(a), (b), and (c). A comparison is also made
between them with the SDA results. For a symmetrical
structure along y, only half of the space is considered.



At first, the convergence of the method is examined
with respect to N (the number of discretization lines in half
space), for NE ( number of electric lines passing through half
of the strip) = 2,3,4,5,6,7,8,9. In Fig. 3, the convergence
curves for the normalized E.d.c (Effective dielectric
constants) are plotted as a function of N. The convergence
unto second decimal places can be achieved even with a
small number of lines as low as N = 37 for the strip width w
equal to the dielectric thickness, and the value of &, as 2.2,

3.27 and 9.8.
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Fig. 3. Testing for the convergence of the method for single layer
microstrip configuration, N - number of lines in half space, NE —

number of e-lines passing through half of the strip =2,3,4,5,6,7,8,9,
dimension of the enclosure a = b =10 w, w/d =1

The convergence is slower for the higher value of the
&, such as 9.8 compared to the other values 2.2 and 3.27.

This is expected, since in the case of smaller value of the
dielectric constant the fringing field is not as concentrated as
for the case of higher diclectric constant and hence the
convergence is fast. The difference between the effective
dielectric constant for discretization lines, N = 67 and N =

77 is only 0.057 % for the & = 9.8. However, for clear

representation of the current distribution on the strip,
sufficient number of lines passing through the strip region is
considered. Therefore, a figure of N = 77 is chosen so as to
provide convergence for all the three cases and to provide NE
= §. It should be noted that for a very small strip width as
low as 1/10 of the dielectric thickness, a value of N even
larger than 77 may be required. After the convergence of the
method is examined, the method is utilized to compute the
dispersion and current distribution of the microstrip in
various configurations. In the first configuration, a microstrip
line on a single layer substrate is considered having
substrate with dielectric constant as &, = 2.2. The thickness

d, of the dielectric is assumed to be equal to the width of the
strip = 0.254 mm. and, the dimensions of the enclosures as a
= b= 10w. The dispersion characteristics are then plotted as
a function of the strip width to the dielectric thickness ratio
for both simple and suspended microstrip configurations as
shown in Fig. 2. For a two-layer substrate, a suspended
microstrip line configuration is considered where the
dielectric constant of the lowest substrate is assumed to be /.
The strip is assumed to be suspended at a height /4, =5/2, i.e.
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in the middle of the enclosure. The effective dielectric
constant value increases for the simple microstrip line while
it decreases for the suspended line when the ratio of the strip
width to dielectric thickness is increased. The dispersion
characteristic shows good agreement with the SDA result. It
should be noted that all the SDA results are plotted for the
number of basis functions equal to one for both the
components of the current densities J, and J, along x. A
comparison with SDA result depicts a deviation for smaller
w/d ratio while a reasonable matching is obtained for higher
w/d ratio. This is because of the fact that MOL fails to yield
efficient and accurate solutions when very narrow strips are
considered in which strong singularities require an extra fine
discretization. However, a fine discretization in turn requires
more number of lines, which leads to computer time intensive
algorithms. Similarly, in the case of SDA, more number of
basis functions is required on the strip to yield accurate result
for larger strip widths.

Fig. 4 shows the dispersion characteristics of the
microstrip line as a function of the strip width.
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Fig. 4. Dispersion characteristics of various microstrip configure
tions as a function of strip width for &, =2.2 atf=30 GHz.,a=b=
=10 w

The value of the effective dielectric constant increases
for the simple microstrip line while it decreases for the
suspended line when the ratio of the strip width to the
dielectric thickness is increased. A comparison with the SDA
result shows a deviation for smaller w/d ratio while a
reasonable matching is obtained for higher w/d ratio. This
may be attributed to the fact that MOL fails to yield efficient
and accurate solutions when the narrow strips are
considered, where strong singularities require an extra fine
discretization. However, a fine discretization in turn requires
more number of lines which leads to computer-time intensive
algorithms. Similarly, in the case of SDA, more number of
basis functions are required on the strip to yield accurate
result for larger strip widths. Fig. 5 shows the distribution of
the current densities for simple, suspended and three layers
substrate at 30 GHz. frequency.

For the three layer case, the dielectric constant of the
lowest and the uppermost layers is assumed to be &, = 9.8,

and that of the middle layer is assumed to be 4.0. The
thickness of each of the dielectric substrate is assumed to be
d = h, = h; = b/6. As shown, the characteristic for the
suspended line has the minimum current density



concentration at the two edges of the strip. Therefore, the
area under the curve is minimum for this case, which
signifies that it has the minimum current flow over the strip
among all the three configurations and hence the minimum
loss. The area under the curve increases for the higher
dielectric constant values showing larger current
concentration at the strip edges.
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Fig. 5. Current distribution of various microstrip configurations at
f=30GHz., ¢,=2.2, a=b=10w, w/d=1 and, w = 0.254 mm

Conclusion

An alternate approach has been presented thus deriving
the Green's function in vector form (in MOL), directly from
the Spectral domain Green's function (in SDA). The utility of
the above approach lies with the fact that same set of
equations can be used for the scalar and vector approach
except that the scalar spectral domain Green's functions are
Fourier transformed while in the vector form they are
discretized. Similarly, the back transformation in SDA

help in developing a Computer aided design software for the
analysis various transmission lines, resonators and filters etc.,
while incorporating both the methods together.
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requires Galerkin's approach and in MOL they are back
transformed using the matrices of the eigen vectors. This may
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ApraSoma bendroji teorija, kuri pagrista Gryno funkcijos dvimaciu vektoriumi. Apskaiciuota Gryno funkcijos tiesioginé priklausomybe,
kai spektriné analizé yra vertinama diskretiniy sistemy lygtimis. Sis metodas gali biiti pritaikytas planariniy mikrobanginiy struktiiry bei
rezonatoriy analitiniam skai¢iavimui. Sitiloma $ias lygtis taip pat vartoti mikrojuosteliniy konfigiiracijy charakteristikoms apskaiciuoti.
Pateikiami mikrojuosteliy pasiskirstymo konstrukcijy pavirSiuose variantai. Gauti rezultatai sulyginimi su rezultatais, kurie gaunami
naudojant spektrinius domenus. Il. 5, bib. 9 (angly kalba; santraukos lietuviy, angly ir rusy k.).

N. Gupta, D.K. Gupta. Analysis of Microstrip Lines using Vector Dyadic Green's Function // Electronics and Electrical Engineering.
— Kaunas: Technologija, 2004. — No. 6(55). — P. 9-13.

This paper presents an approach to analyze the microstrip lines using Vector Dyadic Green's function. The vector Dyadic spectral
Green's function is obtained directly from the Spectral domain immitance approach thus leading to a discretized system of equations which
can be utilized in the semi analytical analysis of the planar microwave structures and resonators. Finally, the equations so derived have been
used to analyze the characteristics of microstrip line in simple and suspended configurations. The current distribution on the strip is also
calculated. The results thus obtained were found to be in good agreement with results using Spectral Domain Approach (SDA). Il1. 5, bibl.
9 (in English; summaries in Lithuanian, English and Russian).
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OrnuceIBaeTcs 06[].[2151 TEOpHsA aHaJIn3a Ha OCHOBE HByXMCpHBIX BeKTOpOB (byHKIII/II/I rpI/IHa ‘YcTaHOBIIeHa 3aBHCHMOCTD (1)yHKIII/II/I oT
Pa3HBIX COOTHOIICHHUIT BEKTOPOB, KOT/Ia CIICKTPAJIbHBII aHAJIH3 OLIEHUBACTCSI YPaBHEHUSAMH IUCKPeTHBIX (yHKImi. [Tpemmaraemplii MeTox
PEKOMEHIyeTCS MCIOJIBb30BaTh Ul TUIAHAPHBIX MHUKPOIOJIOCKOBBIX CTPYKTYp M aHAJIUTHUYECKOTO pacdeTa pe3oHaropoB. IIpuBogurcs
CpaBHEHHE TTOJIyYEHHBIX Pe3yJIbTaTOB C pe3yJIbTaTaMU TEOPHHU CIIEKTPaIbHBIX JoMeH. V. 5, 6ubi. 9 (Ha aHrmiickoM s13bIKe; pedepaThl Ha
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