
 9

ISSN 1392 - 1215 ELEKTRONIKA IR ELEKTROTECHNIKA. 2005. Nr. 3(59)

T 125 AUTOMATIZAVIMAS, ROBOTOTECHNIKA

Hardware Emulation of Large Scale Boolean Equations Systems

S. M. Hyduke
Aldec Inc., 2260 Corporate Circle Henderson, NV 89074 USA, phone: (702) 990-4400
V.I. Hahanov
AD Department, Kharkov national University of Radio Electronics,
Ukraine, Kharkov,61166, Lenin ave., 14 , phone: (380)57- 70-21-326,e-mail:hahanov@kture.kharkov.ua
O.V. Melnikova
AD Department, Kharkov national University of Radio Electronics,
Ukraine, Kharkov,61166, Lenin ave., 14 , phone: (380)57- 70-21-326,e-mail:hahanov@kture.kharkov.ua
I.V. Hahanova
AD Department, Kharkov national University of Radio Electronics,
Ukraine, Kharkov,61166, Lenin ave., 14 , phone: (380)57- 70-21-326,e-mail:hahanov@kture.kharkov.ua

Introduction

The PRUS (Programmable Unlimited Systems)
technology is the newest device architecture for quick,
efficient and inexpensive digital circuit implementation.
The PRUS device architecture is based on massively
parallel processors that communicate with each other at
high speeds without any hardware handshake [1].

PRUS is a vast processor network that processes
blocks of logic functions and provides for exchange of
intermediate results between all processors. Since PRUS
needs only 48 bits of memory to emulate a dual input gate,
a 256 Mbytes RAM or ROM memory allows emulating
designs well over 20 million ASIC gates. Flip-flops require
from 48 to 64 bits of RAM memory and can be freely
intermixed with gates in any circuit combination,
providing for total design freedom.

Since basic network processors can be built with less
than 90 gates each, PRUS devices with hundreds of such
processors can be made even with today’s silicon
technology. Because of its memory efficiency in emulating
gates and flip-flops, PRUS will be the lowest cost control
device for industrial, medical, security, military and other
applications. It is particularly well suited for signal
processing, routers, pattern recognition and encrypting
devices.

Actuality

There are several technologies to process Boolean
equations containing million lines or equivalent gates [2,3].

1. Personal computer or workstation based on Intel
microprocessor can be used. Each equation will be
processed sequentially using software approach, because
only one processor exists although high-performance. The
cost and time consumptions of this solution are very high.

2. Specialized parallel processor based on PLD. In
this case high level of parallelism processing of equations
compensates relatively low (compared to CPU) clock
speed. This reprogrammable solution is absolute winner in
performance. But significant drawback is absence of
flexibility, which typical for software approaches.
Moreover, implementation into PLD is high cost if the
volume of future distribution will be tens of thousands
chips.

3. The third solution is closely related with
integration of CPU, PLD and ASIC advantages, such as
[4]:

1) Flexibility of Boolean equations programming,
which allows on-the-fly editing specification in form of
source code.

2) Minimal possible instruction set, which allows
simple circuit solutions.

3) Parallelization of Boolean equations processing,
because of PLD ideology, but with CPU elements, which
means having lots of interconnected single-bit processors
with simple instruction set for parallel programming.

4) Multiprocessor implementation into ASIC, which
allows maximum clock rate and minimal cost per chip for
large manufacturing volumes (more 10 000), low power
consumption.

5) Pipelining of Boolean equations processing is
exclusive property, which typical to multiprocessor
systems, where pipelined processing is one of the main
operation mode besides parallel and sequential ones.

Thus necessity in multiprocessor for Boolean
equations processing with properties mentioned before,
conditioned by current microelectronics market trends.
What does it mean? In the nearest future actual and
complex computational problems will be solved by
specialized micro- and multiprocessor. Customization
index is growing on the microelectronics market. When
scope of universal computers begins to exceed needs of

 10

current market sector, business competition shifts accents
from increasing overall performance to properties
improvements. End-user is ready to pay additional money
for that. This is not only convenience and reliability, but
high-performance solution of complex problem, custom
properties, power saving, autonomy, miniaturization,
flexibility and programmability.

PRUS Architecture

Structure of PRUS Matrix. PRUS is a system of
many simple logic processors (sequencers) connected in
matrix of various sizes: 4x4, 8x8, 16x16, etc. The
processors can be connected “in chain”, as “honey-comb”
network and in other combinations (Fig.1). Some
asymmetrical connectivity among the processors was also
tried for improved program memory utilization.

Fig. 1. PRUS Matrix

Sequencers are logic processors that do not have
jump, branch or similar instructions that change the order
of instruction execution. How a set of synchronized
sequencers connected in a network can be used for quick
and efficient processing of system level designs is
described below.

Since the PRUS technology is based on mathematical
algorithms, they provide quick and automatic allocation of
design sections to processors in the network. As a result,
the designer knows up front how fast his or her design will
run in PRUS. No manual tweaking is needed for improving
memory utilization or device performance. Each sequencer
can be interacting with its eight neighboring sequencers to
exchange data.

This allows splitting logic equations between
neighboring sequencers and provides for handling larger
designs and greater design flexibility.
 Each sequencer has its own Program Memory for storing
binary instructions executing the assigned logic equations
and internal RAM Data Memory for storing the results of
logic equation processing. During device programming
each Program Memory is loaded with its own set of
machine instructions representing the associated logic
equations. Since all sequencers and the associated program
memories are driven preferably by a single common

address register, they operate and execute logic equations
synchronously.

To speed design execution, multiple sequencers are
used for parallel processing of logic equations. The PRUS
Matrix is comprised of a set of sequencers, having
Program Memories driven by a common Address Counter
for the entire processor network.

The Structure of a Sequencer. Sequencers emulate
Boolean expressions. All sequencers in a network operate
synchronously on streams of single-bit input logic data and
perform logical “and”, “or” and “xor” operations. The
resulting emulation data are saved in local Data Memory.
In order to synchronize the entire system, each PRUS
sequencer in a network has its Program Memory addressed
by the same common Address Counter (Fig. 3).

Program Memory stores instructions for the entire
simulation cycle. It operates under control of input address
lines and produces instruction words, shown by red color.
The instruction word controls operation of all blocks in a
sequencer. Program Memories of all sequencers can be
combined into a single memory addressed by the same
Address Counter.

Data Memory is used for storing data produced by
execution of logic equations by the sequencer. Typically,
the lower 10 to 14 lower bits of the instruction word serve
as Data Memory address, addressing from 1024 to 16,384
RAM locations.

InMux – Input Multiplexer is used for feeding
external data into the sequencer. It can select the data from
one of eight neighbor processors (NP) or from one of eight
input bits when Mux_En signal is active. Otherwise, it
selects data from the internal Data Memory.

Single Bit Processor (SBP) – performs two
concurrent AND and XOR logic operations on true or
inverse input values. They are performed by means of
AND Block and XOR Block flip-flops. The SBP is a non-
Van Neumann processor because it processes first all input
data and after all “read input data” operations have been
completed, an “output” instruction selects output either
from the AND Block or XOR Block. In place of AND or
XOR flip-flops an OR operator can also be used.

SBP Mux –Single Bit Processor Multiplexer selects
either the AND Block or XOR Block data to the SBP
output. It can select ANDT (operation AND-True), ANDI
(operation AND-Not), XOR block output or data from
Input Multiplexer for fast transmission to the neighboring
sequencers as NP signal.

Output Buffer – provides data to neighboring
processors via the NP signal line. It holds data for several
clocks so that it can be ”read” by the neighboring
processors.
Output Decoder – it holds data till is reset by another
PRUS instruction,

Instruction Decoder – decodes special instructions,
such as NOOP or “no operation”, END of working
program and others, listed in section Instructions for PRUS
Martix. It produces control signals for Output Decoder,
Data Memory, Input Multiplexer and Single Bit Processor.
The Instruction Decoder also produces the END_INSTR
signal, which controls the Program Memory Address
Counter (see Fig.2). When active, the END_INSTR resets
the Address Counter.

 11

Fig. 2. General structure of one sequencer

The Structure of the Single Bit Processor

The single bit processor (SBP) is at the heart of
sequencer operations. It performs the basic logical
operations such as “and”, “not” and “or”. Fig. 3 shows
embodiment of a single bit processor that facilitates
reverse Polish notation (RPN) machine instruction
execution. The processor is performing in parallel the
AND and OR logic operations on all input signals. Those
concurrent operations are executed by the AND Block and
OR Block, comprised of one logic element and one-bit
register.

Since de Morgan theorem allows conversion of AND
operations into OR operations and vice versa, the
concurrent presence of both registers AND and OR is not
mandatory.
 For example, the register OR can be replaced by a block
performing the XOR logic operation (Fig. 3).

Fig. 3. Structure of Single Bit Processor with AND and OR blocks

In both versions (Fig. 3 and Fig.4) the AND register
is set to logical ‘1’at the beginning of each logic equation
execution, and it will be reset by the first logical’0’. The

OR register (Fig.3) is set to logical ‘0’ at the beginning of
logic equation processing and will permanently be set to
‘1’ by the first logical ‘1’ that appears on its input. Register
XOR (Fig.4) doesn’t require setting to any value caused by
its combinatorial operation. Initializing of registers is
invoked by having ‘1’ in the highest bit position of
instruction word.

True/Inv Multiplexer selects either ‘True’ or ‘Not’
input signal value and passes it to the SBP processor. This
selector is under control of the second highest bit of the
instruction word. The True/Inv Multiplexer is fed input
data by the Input Multiplexer that selects data either from
input signal lines (IN), one of the neighboring processors
(NP) or from internal Data Memory.

Fig. 4. Structure of Single Bit Processor with AND and XOR
blocks

PRUS Design Flow

PRUS Design Flow consists of three main parts:
1) Converting the design into set of Boolean

equations;
2) Distribution of Boolean equations between the

processors;

AND
Block

XOR
Block

Sbp
Mux

In
Mux

Data
Memory
1024 Bits

Instruction
decoder

Single Bit Processor

True/
Inv

Mux

Clk
Reset
WE

.....

Program
Memory

Instruction

Reset

Address
DM_WE

Clk

B(12..0)

B(12..10)
B(3..0)

B(9..0)

Mux_EN

B(10)
B(3..0)

Reset
Clk

Clk

Out_Dec_EN

End_Instr

Output
Decoder

OUT(0)
OUT(1)

OUT(n)

IN(n)
IN(0)

NP(0)
NP(n)

Output
Buffer

To NP

SEQUENCER

End_Instr

 12

3) Emulation of design in hardware.
PRUS can work with designs inputted in the form of

schematics, VHDL and Verilog design files [5,6,7].
Designs can be represented by HDL code, tables, FSM
flowcharts and functional statements. Both RTL and
Behavioral designs can be supported.

First, hardware description language files are
converted into an equivalent set of Boolean logic
equations. Next, these equations are mathematically
optimized, converted into binary instruction code using the
RPN method and distributed between sequencers
according to an algorithm that simplifies communication
between design sections located in different sequencers.
For optimum utilization of silicon resources,
approximately the same number of instructions is assigned
to each sequencer.

Because of the synchronous operation of sequencers,
the compiler that distributes logic equations between them
can calculate in advance at what time the result of each
logic operation will be provided on the selected sequencer
output. The compiler can then make such arrangement of
instructions in the interconnected neighboring sequencer
that it will be ready to read this output as it occurs and
without any ‘hand-shake’ control signals that are typically
used to facilitate communication between processors.

The design tools for development of devices under
PRUS are simple and operating about two orders of
magnitude faster than the tools for designing devices
employing the current silicon architectures. Specifically,
only the functional simulation of the design will be needed.
Since the number of instructions in a program memory and
the operating clock speed determine the sampling rate of
the logic circuit located within the sequencer, there is no
need for timing analysis. This sampling rate is the
maximum response time of the sequencer to the external
signals. By lowering the number of instructions in a
sequencer and increasing its clock speed, this sampling rate
can be increased accordingly.

PRUS Emulation in Hardware

A model of a programmable device operating as a
network of 64 processors (PRUS for PLD), downloaded
into HES3-3000 (AllTech) with FPGA Virtex II and 256
Mb RAM has been designed and tested. It emulated
correctly tens of digital designs. While the Design
Compiler (Synopsys) was spending the same amount of
time compiling designs for FPGAs and PRUS, the
distribution of logic equations (40000 gates) in PRUS took
less than 10 minutes. Also, the entire PRUS design flow
was running from a script, resulting in flawless operation
of the RTL design on a network of processors. On the
other hand, the place and route of the same design in
FPGA took several hours and required expert knowledge
of the tools and design process.

The entire processor network has been designed for
hardware and emulation code efficiency. It is expected that
over 90% of the chip area will be used by highly structured
memory, resulting in efficient use of silicon. Also, because
of small number of registers in the device (2 flip-flops per
processor), there will be low power dissipation even when

emulating large systems. Test stimulus is fed to the system
from Active-HDL through PLI interface.

Conclusions

The main results of PRUS technology are scientific
novelty and practical application. The scientific novelty is
defined by following points:

1. The new high-performance PRUS technology for
parallel processing of Boolean equations has been
proposed.

2. The architecture of multiprocessor, where every
single-bit processor is connected with eight neighbors, has
been developed.

3. The structure of single-bit processor has been
represented. It performs AND, OR, NOT, XOR operations.
The structure of sequencer has been represented also. The
main parts of it are: single-bit processor, program memory,
data memory, control circuit.

4. The model of calculations has been proposed. The
logic equations are distributed uniformly between
processors using dichotomy method.

The practical application of PRUS technology shows
the advantages of its appearing on EDA market in
comparison with existing technologies:

1. The present technologies also require cumbersome
and labor-intensive critical path timing analysis of the
routed designs. Some large FPGA designs need to be
rerouted over forty times before the desired operational
speed is achieved. PRUS methodology eliminates entirely
the timing analysis. The first compilation is the only one
designer will ever need.

2. The current device architectures that use deep sub-
micron silicon technologies require complex analysis of
cells and their connections to determine the overall design
performance. New physical phenomena are playing larger
role at higher cell densities, making the layout analysis
continuously more complex. It is becoming now quite
apparent that some form of incremental compilation will
be necessary for the layout of high-density deep sub-
micron devices. However, such incremental silicon
compilation will require a substantial human involvement,
which will slow even more the design process. It is thus
another object of PRUS to eliminate any manual physical
layout operations.

3. Efficient testing of complex devices requires
placing additional boundary-scan circuits on the silicon.
This makes designing a complex operation and lowers the
effective utilization of silicon area. However, since there is
no other good way to test the silicon, this process is widely
applied to ASIC devices in excess of 100,000 gates. It is
yet another object of PRUS to provide for effective device
testing without any additional boundary scan or similar
circuits.

4. Due to a random nature of cell utilization, large
areas of the silicon are set aside to facilitate connections
between cells in gate arrays, CPLDs and FPGAs. This
lowers the effective utilization of the silicon. PRUS is
based on highly regular memory architecture and does not
require design dependent interconnect areas, thus
improving the silicon utilization.

 13

5. The CPLD and FPGA reprogrammable devices put
severe restrictions on the connections between gates and
flip-flops. The number of used gates and flip-flops, even in
the largest FPGA devices, is thus strictly limited. The
PRUS technology on the other hand allows total freedom
in emulation of either gates and/or flip-flops in RAM. With
millions of flip-flops available in PRUS, it is thus
particularly well suited for sequential circuit applications.

6. The current technologies dissipate large amount of
heat because circuits operate in parallel. This limits the
design size that can be placed on silicon. PRUS uses a
parallel-serial circuit operation, which lowers power
dissipation and allows considerably higher circuit
densities. Moreover, since the basic PRUS processor is
made with only two flip-flops and less than ninety cells,
such processor is dissipating a small amount of energy.

7. The current silicon compilers are based more on art
than strict mathematical algorithms. As a result, designers
must manually tweak some of the circuits for better
performance or improved area utilization. This requires
high level of expertise, constant employee education and
trial and error approach for best results. Since PRUS is
based on mathematical algorithms, it provides fully
automated design environment, which eliminates manual
tweaking of designs and lowers the level of expertise
demanded from the designer.

8. Since the current design tool technology is
sensitive to the physical phenomena in silicon, designers
continuously need to buy newer and more advanced
software. PRUS isolates the designer from changes in the
silicon technologies so that one tool set will be able to
handle all future silicon process enhancements.

References

1. Hyduke S. U.S. Patent 6,578,133, June 10, 2003.
2. Baneres D., Cortadella J., Kishinevsky M. A Recursive

Paradigm to Solve Boolean Relations // Proceedings of
Design Automation Conference, P. 416 - 421.

3. Richard J. Discrete Mathematics, Prentice Hall 2001, 621 p.
4. Voros N.S., Sanchez L., Alonso A., Birbas A.N., Birbas

M., Jerraya A. Hardware-Software Co-Design of Complex
Embedded Systems. Design Automation for Embedded
Systems.– Boston: Kluwer Academic Publishers. – 2003. –
P.5-34.

5. Active-HDL User's Guid. Second Edition. – Copyright. –
Aldec Inc. – 2003. – 213 p.

6. Palnitkar S. Verilog HDL. A Guide to digital design and
synthesis. Sunsoft Press. A prentice Hall Title, 2002. – 396 p.

7. Roth C.H.Jr. Digital Systems Design UsingVHDL. PWS
Publishing Company, 20 Parkl Plaza, Noston, MA 02116
ISBN. – 470 p.

Pateikta spaudai 2005 01 15

S.M. Hyduke, V.I. Hahanov, O.V. Melnikova, I.V. Hahanova. Didelių Bulio lygčių sistemų aparatūrinė emuliacija // Elektronika
ir elektrotechnika. – Kaunas: Technologija, 2005. – Nr.3(59). – P.9–13.

Siūloma naši Bulio lygčių sprendimo technologija pagrįsta sferinio vieno bito multiprocesoriaus PRUS (Programmable Unlimited
Systems), realizuoto ASIC kristale panaudojimu. Jis leidžia atlikti lygiagretų, nuoseklų ir konvejerinį Bulio lygčių, užrašytų operacijų
AND, OR, NOT, XOR pagrindu, apdorojimą. Multiprocesorius yra ekonomiškas – lygčių sistemos iš 20 milijonų ventilių apdorojimui
užtenka tik 256 Mb operatyviosios atminties. Il. 4, bibl. 7 (anglų kalba; santraukos lietuvių, anglų ir rusų k.).

S.M. Hyduke, V.I. Hahanov, O.V. Melnikova, I.V. Hahanova. Hardware Emulation of Large Scale Boolean Equations Systems //
Electronic and Electrical Engineering. – Kaunas: Technologija, 2005. – Nr. 3(59). – P. 9–13.

This paper offers high-performance technology for processing Boolean equations, based on Compiler Synchronized Parallel-
processor Network-based Logic Device PRUS (Programmable Unlimited Systems) - single-bit spherical multiprocessor, which
implemented into ASIC. This technology allows to perform parallel, sequential and pipelined Boolean equations processing using AND,
OR, NOT, XOR operations. Multiprocessor is very efficient in hardware implementation – e.g. 256MB RAM is enough for processing
Boolean equations containing 20 millions gates. Ill. 4, bibl. 7 (in English, summaries in Lithuanian, English, Russian).

S.M. Hyduke, В.И. Хаханов, О.В. Мельникова, И.В. Хаханова. Аппаратная эмуляция систем Булевых уравнений
большой размерности // Электроника и электротехника. – Каунас: Технология, 2005. – № 3(59). – P. 9–13.

Предлагается высокопроизводительная технология решения булевых уравнений, основанная на использовании
сферического однобитного мультипроцессора PRUS (Programmable Unlimited Systems), реализуемого на кристалле ASIC. Он
позволяет осуществлять параллельную, последовательную и конвейерную обработку булевых уравнений, записанных в базисе
операций AND, OR, NOT, XOR. Мультипроцессор экономичен в аппаратурном исполнении – для обработки системы
уравнений, насчитывающей 20 миллионов вентилей, необходимо иметь всего 256 Mбайт оперативной памяти. Ил. 4, библ. 7
(на английском языке; рефераты на литовском, английском и русском яз.).

