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Introduction 
 

The PRUS (Programmable Unlimited Systems) 
technology is the newest device architecture for quick, 
efficient and inexpensive digital circuit implementation. 
The PRUS device architecture is based on massively 
parallel processors that communicate with each other at 
high speeds without any hardware handshake [1]. 

PRUS is a vast processor network that processes 
blocks of logic functions and provides for exchange of 
intermediate results between all processors. Since PRUS 
needs only 48 bits of memory to emulate a dual input gate, 
a 256 Mbytes RAM or ROM memory allows emulating 
designs well over 20 million ASIC gates. Flip-flops require 
from 48 to 64 bits of RAM memory and can be freely 
intermixed with gates in any circuit combination, 
providing for total design freedom. 

Since basic network processors can be built with less 
than 90 gates each, PRUS devices with hundreds of such 
processors can be made even with today’s silicon 
technology. Because of its memory efficiency in emulating 
gates and flip-flops, PRUS will be the lowest cost control 
device for industrial, medical, security, military and other 
applications. It is particularly well suited for signal 
processing, routers, pattern recognition and encrypting 
devices. 
 
Actuality  
 

There are several technologies to process Boolean 
equations containing million lines or equivalent gates [2,3].  

1. Personal computer or workstation based on Intel 
microprocessor can be used. Each equation will be 
processed sequentially using software approach, because 
only one processor exists although high-performance. The 
cost and time consumptions of this solution are very high. 

2. Specialized parallel processor based on PLD. In 
this case high level of parallelism processing of equations 
compensates relatively low (compared to CPU) clock 
speed. This reprogrammable solution is absolute winner in 
performance. But significant drawback is absence of 
flexibility, which typical for software approaches. 
Moreover, implementation into PLD is high cost if the 
volume of future distribution will be tens of thousands 
chips.  

3. The third solution is closely related with 
integration of CPU, PLD and ASIC advantages, such as 
[4]: 

1) Flexibility of Boolean equations programming, 
which allows on-the-fly editing specification in form of 
source code. 

2) Minimal possible instruction set, which allows 
simple circuit solutions. 

3) Parallelization of Boolean equations processing, 
because of PLD ideology, but with CPU elements, which 
means having lots of interconnected single-bit processors 
with simple instruction set for parallel programming. 

4) Multiprocessor implementation into ASIC, which 
allows maximum clock rate and minimal cost per chip for 
large manufacturing volumes (more 10 000), low power 
consumption. 

5) Pipelining of Boolean equations processing is 
exclusive property, which typical to multiprocessor 
systems, where pipelined processing is one of the main 
operation mode besides parallel and sequential ones. 

Thus necessity in multiprocessor for Boolean 
equations processing with properties mentioned before, 
conditioned by current microelectronics market trends.  
What does it mean? In the nearest future actual and 
complex computational problems will be solved by 
specialized micro- and multiprocessor. Customization 
index is growing on the microelectronics market. When 
scope of universal computers begins to exceed needs of 
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current market sector, business competition shifts accents 
from increasing overall performance to properties 
improvements. End-user is ready to pay additional money 
for that. This is not only convenience and reliability, but 
high-performance solution of complex problem, custom 
properties, power saving, autonomy, miniaturization, 
flexibility and programmability. 
 
PRUS Architecture 
 

Structure of PRUS Matrix. PRUS is a system of 
many simple logic processors (sequencers) connected in 
matrix of various sizes: 4x4, 8x8, 16x16, etc. The 
processors can be connected “in chain”, as “honey-comb” 
network and in other combinations (Fig.1). Some 
asymmetrical connectivity among the processors was also 
tried for improved program memory utilization.  

 
 
Fig. 1. PRUS Matrix 
 

Sequencers are logic processors that do not have 
jump, branch or similar instructions that change the order 
of instruction execution. How a set of synchronized 
sequencers connected in a network can be used for quick 
and efficient processing of system level designs is 
described below. 

Since the PRUS technology is based on mathematical 
algorithms, they provide quick and automatic allocation of 
design sections to processors in the network. As a result, 
the designer knows up front how fast his or her design will 
run in PRUS. No manual tweaking is needed for improving 
memory utilization or device performance. Each sequencer 
can be interacting with its eight neighboring sequencers to 
exchange data.   

This allows splitting logic equations between 
neighboring sequencers and provides for handling larger 
designs and greater design flexibility. 
 Each sequencer has its own Program Memory for storing 
binary instructions executing the assigned logic equations 
and internal RAM Data Memory for storing the results of 
logic equation processing. During device programming 
each Program Memory is loaded with its own set of 
machine instructions representing the associated logic 
equations. Since all sequencers and the associated program 
memories are driven preferably by a single common 

address register, they operate and execute logic equations 
synchronously. 

To speed design execution, multiple sequencers are 
used for parallel processing of logic equations. The PRUS 
Matrix is comprised of a set of sequencers, having 
Program Memories driven by a common Address Counter 
for the entire processor network. 

The Structure of a Sequencer. Sequencers emulate 
Boolean expressions. All sequencers in a network operate 
synchronously on streams of single-bit input logic data and 
perform logical “and”, “or” and “xor” operations. The 
resulting emulation data are saved in local Data Memory. 
In order to synchronize the entire system, each PRUS 
sequencer in a network has its Program Memory addressed 
by the same common Address Counter (Fig. 3). 

Program Memory stores instructions for the entire 
simulation cycle. It operates under control of input address 
lines and produces instruction words, shown by red color. 
The instruction word controls operation of all blocks in a 
sequencer. Program Memories of all sequencers can be 
combined into a single memory addressed by the same 
Address Counter. 

Data Memory is used for storing data produced by 
execution of logic equations by the sequencer. Typically, 
the lower 10 to 14 lower bits of the instruction word serve 
as Data Memory address, addressing from 1024 to 16,384 
RAM locations.  

InMux – Input Multiplexer is used for feeding 
external data into the sequencer. It can select the data from 
one of eight neighbor processors (NP) or from one of eight 
input bits when Mux_En signal is active. Otherwise, it 
selects data from the internal Data Memory. 

Single Bit Processor (SBP) – performs two 
concurrent AND and XOR logic operations on true or 
inverse input values. They are performed by means of 
AND Block and XOR Block flip-flops. The SBP is a non- 
Van Neumann processor because it processes first all input 
data and after all “read input data” operations have been 
completed, an “output” instruction selects output either 
from the AND Block or XOR Block. In place of AND or 
XOR flip-flops an OR operator can also be used. 

SBP Mux –Single Bit Processor Multiplexer selects 
either the AND Block or XOR Block data to the SBP 
output. It can select ANDT (operation AND-True), ANDI 
(operation AND-Not), XOR block output or data from 
Input Multiplexer for fast transmission to the neighboring 
sequencers as NP signal. 

Output Buffer – provides data to neighboring 
processors via the NP signal line. It holds data for several 
clocks so that it can be ”read” by the neighboring 
processors. 
Output Decoder – it holds data till is reset by another 
PRUS instruction, 

Instruction Decoder – decodes special instructions, 
such as NOOP or “no operation”, END of working 
program and others, listed in section Instructions for PRUS 
Martix. It produces control signals for Output Decoder, 
Data Memory, Input Multiplexer and Single Bit Processor. 
The Instruction Decoder also produces the END_INSTR 
signal, which controls the Program Memory Address 
Counter (see Fig.2). When active, the END_INSTR resets 
the Address Counter. 
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Fig. 2. General structure of one sequencer 
 
The Structure of the Single Bit Processor 
 

The single bit processor (SBP) is at the heart of 
sequencer operations. It performs the basic logical 
operations such as “and”, “not” and “or”. Fig. 3 shows 
embodiment of a single bit processor that facilitates 
reverse Polish notation (RPN) machine instruction 
execution. The processor is performing in parallel the 
AND and OR logic operations on all input signals. Those 
concurrent operations are executed by the AND Block and 
OR Block, comprised of one logic element and one-bit 
register. 

Since de Morgan theorem allows conversion of AND 
operations into OR operations and vice versa, the 
concurrent presence of both registers AND and OR is not 
mandatory.  
 For example, the register OR can be replaced by a block 
performing the XOR logic operation (Fig. 3).   
 

  
Fig. 3. Structure of Single Bit Processor with AND and OR blocks 
 

In both versions (Fig. 3 and Fig.4) the AND register 
is set to logical ‘1’at the beginning of each logic equation 
execution, and it will be reset by the first logical’0’. The 

OR register (Fig.3) is set to logical ‘0’ at the beginning of 
logic equation processing and will permanently be set to 
‘1’ by the first logical ‘1’ that appears on its input. Register 
XOR (Fig.4) doesn’t require setting to any value caused by 
its combinatorial operation. Initializing of registers is 
invoked by having ‘1’ in the highest bit position of 
instruction word.  

True/Inv Multiplexer selects either ‘True’ or ‘Not’ 
input signal value and passes it to the SBP processor. This 
selector is under control of the second highest bit of the 
instruction word. The True/Inv Multiplexer is fed input 
data by the Input Multiplexer that selects data either from 
input signal lines (IN), one of the neighboring processors 
(NP) or from internal Data Memory.  

 

 
 
Fig. 4. Structure of Single Bit Processor with AND and XOR 
blocks 
 
PRUS Design Flow 
 

PRUS Design Flow consists of three main parts:  
1) Converting the design into set of Boolean 

equations; 
2) Distribution of Boolean equations between the 

processors; 
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3) Emulation of design in hardware. 
PRUS can work with designs inputted in the form of 

schematics, VHDL and Verilog design files [5,6,7].  
Designs can be represented by HDL code, tables, FSM 
flowcharts and functional statements. Both RTL and 
Behavioral designs can be supported. 

First, hardware description language files are 
converted into an equivalent set of Boolean logic 
equations. Next, these equations are mathematically 
optimized, converted into binary instruction code using the 
RPN method and distributed between sequencers 
according to an algorithm that simplifies communication 
between design sections located in different sequencers. 
For optimum utilization of silicon resources, 
approximately the same number of instructions is assigned 
to each sequencer.  

Because of the synchronous operation of sequencers, 
the compiler that distributes logic equations between them 
can calculate in advance at what time the result of each 
logic operation will be provided on the selected sequencer 
output. The compiler can then make such arrangement of 
instructions in the interconnected neighboring sequencer 
that it will be ready to read this output as it occurs and 
without any ‘hand-shake’ control signals that are typically 
used to facilitate communication between processors. 

The design tools for development of devices under 
PRUS are simple and operating about two orders of 
magnitude faster than the tools for designing devices 
employing the current silicon architectures. Specifically, 
only the functional simulation of the design will be needed. 
Since the number of instructions in a program memory and 
the operating clock speed determine the sampling rate of 
the logic circuit located within the sequencer, there is no 
need for timing analysis. This sampling rate is the 
maximum response time of the sequencer to the external 
signals. By lowering the number of instructions in a 
sequencer and increasing its clock speed, this sampling rate 
can be increased accordingly.  
 
PRUS Emulation in Hardware 
 

A model of a programmable device operating as a 
network of 64 processors (PRUS for PLD), downloaded 
into HES3-3000 (AllTech) with FPGA Virtex II and 256 
Mb RAM has been designed and tested. It emulated 
correctly tens of digital designs. While the Design 
Compiler (Synopsys) was spending the same amount of 
time compiling designs for FPGAs and PRUS, the 
distribution of logic equations (40000 gates) in PRUS took 
less than 10 minutes. Also, the entire PRUS design flow 
was running from a script, resulting in flawless operation 
of the RTL design on a network of processors. On the 
other hand, the place and route of the same design in 
FPGA took several hours and required expert knowledge 
of the tools and design process.   

The entire processor network has been designed for 
hardware and emulation code efficiency. It is expected that 
over 90% of the chip area will be used by highly structured 
memory, resulting in efficient use of silicon. Also, because 
of small number of registers in the device (2 flip-flops per 
processor), there will be low power dissipation even when 

emulating large systems. Test stimulus is fed to the system 
from Active-HDL through PLI interface.   
 
Conclusions 
 

The main results of PRUS technology are scientific 
novelty and practical application. The scientific novelty is 
defined by following points:   

1. The new high-performance PRUS technology for 
parallel processing of Boolean equations has been 
proposed.   

2. The architecture of multiprocessor, where every 
single-bit processor is connected with eight neighbors, has 
been developed.  

3. The structure of single-bit processor has been 
represented. It performs AND, OR, NOT, XOR operations. 
The structure of sequencer has been represented also. The 
main parts of it are: single-bit processor, program memory, 
data memory, control circuit.  

4. The model of calculations has been proposed. The 
logic equations are distributed uniformly between 
processors using dichotomy method. 

The practical application of PRUS technology shows 
the advantages of its appearing on EDA market in 
comparison with existing technologies: 

1. The present technologies also require cumbersome 
and labor-intensive critical path timing analysis of the 
routed designs. Some large FPGA designs need to be 
rerouted over forty times before the desired operational 
speed is achieved. PRUS methodology eliminates entirely 
the timing analysis. The first compilation is the only one 
designer will ever need. 

2. The current device architectures that use deep sub-
micron silicon technologies require complex analysis of 
cells and their connections to determine the overall design 
performance. New physical phenomena are playing larger 
role at higher cell densities, making the layout analysis 
continuously more complex. It is becoming now quite 
apparent that some form of incremental compilation will 
be necessary for the layout of high-density deep sub-
micron devices. However, such incremental silicon 
compilation will require a substantial human involvement, 
which will slow even more the design process. It is thus 
another object of PRUS to eliminate any manual physical 
layout operations. 

3. Efficient testing of complex devices requires 
placing additional boundary-scan circuits on the silicon. 
This makes designing a complex operation and lowers the 
effective utilization of silicon area. However, since there is 
no other good way to test the silicon, this process is widely 
applied to ASIC devices in excess of 100,000 gates. It is 
yet another object of PRUS to provide for effective device 
testing without any additional boundary scan or similar 
circuits. 

4. Due to a random nature of cell utilization, large 
areas of the silicon are set aside to facilitate connections 
between cells in gate arrays, CPLDs and FPGAs. This 
lowers the effective utilization of the silicon. PRUS is 
based on highly regular memory architecture and does not 
require design dependent interconnect areas, thus 
improving the silicon utilization. 
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5. The CPLD and FPGA reprogrammable devices put 
severe restrictions on the connections between gates and 
flip-flops. The number of used gates and flip-flops, even in 
the largest FPGA devices, is thus strictly limited. The 
PRUS technology on the other hand allows total freedom 
in emulation of either gates and/or flip-flops in RAM. With 
millions of flip-flops available in PRUS, it is thus 
particularly well suited for sequential circuit applications. 

6. The current technologies dissipate large amount of 
heat because circuits operate in parallel. This limits the 
design size that can be placed on silicon. PRUS uses a 
parallel-serial circuit operation, which lowers power 
dissipation and allows considerably higher circuit 
densities. Moreover, since the basic PRUS processor is 
made with only two flip-flops and less than ninety cells, 
such processor is dissipating a small amount of energy. 

7. The current silicon compilers are based more on art 
than strict mathematical algorithms. As a result, designers 
must manually tweak some of the circuits for better 
performance or improved area utilization. This requires 
high level of expertise, constant employee education and 
trial and error approach for best results. Since PRUS is 
based on mathematical algorithms, it provides fully 
automated design environment, which eliminates manual 
tweaking of designs and lowers the level of expertise 
demanded from the designer. 

8. Since the current design tool technology is 
sensitive to the physical phenomena in silicon, designers 
continuously need to buy newer and more advanced 
software. PRUS isolates the designer from changes in the 
silicon technologies so that one tool set will be able to 
handle all future silicon process enhancements.  
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